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by Yudong He

Department of Industrial Engineering and Decision Analytics

The Hong Kong University of Science and Technology

Abstract

Humans can listen to others in noisy environments, but it is difficult for a humanoid robot

to separate the speech of individual persons from a mixture of these sounds. Known as

the cocktail party problem, this challenge has intrigued scientists and engineers for more

than half a century. Using the sparse characteristic of speech signals, this thesis improves

three binaural audio separation algorithms in different scenarios: 1) weak target signal

extraction, 2) fast separation, and 3) under-determined reverberant speech separation (i.e.,

binaural speech separation problem with more than two mixed sources in the presence of

echoes).

First, the thesis improves a previously reported audio cancellation kernel to separate

weak target signals. Our new version of the cancellation kernel achieves comparable or

even better results with 3000 times the speed thanks to our analytical solutions. This so-

lution originated from our realization that the whole extraction process can be performed

in the time-frequency domain by the Short-time Fourier transform.

Second, the thesis improves the degenerate unmixing estimation technique (DUET),

one of the fastest algorithms in speech separation. As a binary masking technique, DUET

cannot completely separate speech signals, resulting in poor performance. We applied

post-filtering with multiple linear spatial filters to improve the mask separation results

and successfully resulted in significantly better separation performance.

Third, the thesis improves the l1 minimization commonly used in audio separation

algorithms. Speech separation can be converted to an l1 minimization problem that aims

to minimize the l1 norm of the reconstructed signal. We derived and test a new weighted l1

xiv



norm and showed that it can outperform the unweighted l1 norm. The new algorithm can

be solved using the same l1 minimization solver but converges faster than the unweighted

l1 minimization. The improved l1 minimization algorithm has been shown to work in the

presence of reverberation and with more than two mixed speech sources.
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Chapter 1

Introduction

1.1 Cocktail Party Problem

Imagine you are at a cocktail party and there are a lot of people around you talking.

It may not come as a surprise to you that you can hear or communicate with specific

people in such a noisy environment. Humans are born with this selective hearing ability.

However, developing a digit algorithm to reconstruct speech signals from their mixtures

is very challenging. This difficulty is referred to as the cocktail party problem [10]. As

shown in Fig. 1.1, the mixed signal is very messy and the speech source signals are highly

non-stationary, which can not be modeled by a simple random signal, e.g., the Gaussian

signal. Their patterns are also elusive. It is so impressive that humans can do a real-

time, highly robust separation of more sources even without any effort. For more than

half a century, legions of scientists and engineers have been studying to overcome this

problem. Not only is the problem itself challenging, but the solution to this problem has

great application prospects in various real scenarios, including hearing aid devices, voice

assistants, hands-free communication, conference call, humanoid robots with auditory

systems, etc.

1.1.1 Significance of solving the cocktail party problem

Solutions to the cocktail party problem can be applied in a variety of scenarios (see

Fig. 1.2). For example, using voice assistant and hand-free communication in a noisy

environment, e.g., public transportation, restaurants, cafes, etc. In recent years, because

of the pandemic of the Covid 19 virus, virtual meeting, like zoom, is becoming more and

more popular. Due to its convenience, the virtual meeting may remain popular even if the

1



Figure 1.1: An illustration of speech signal separation. It is an inverse process to recon-
struct speech source signals from their mixed signals. (a) Mixed signals observed by two
microphones. (b1)-(b4) Four source signals.

virus pandemic is over. Solutions to the cocktail party problem can be applied in scenarios

where multiple people have different virtual meetings in the same room, or having the

same meeting but are assigned to different breakout rooms. A humanoid robot with an

auditory system is another application.

1.1.2 Solutions - blind source separation algorithms

Blind source separation (BSS) is a technique of extracting one or more sources and can-

celing interference and/or noise without prior information on the sources’ location or the

mixing process. Generally speaking, BSS can be applied to solve not only speech sep-

aration but also image separation, e.g., separation of electroencephalogram (EEG) and

magnetoencephalography (MEG) signals. In this thesis, when we talk about BSS, the

separation object is a mixed speech signal.

A bulk of BSS techniques have been proposed and well documented in recent years.

There are some review papers [11–13] to help people have a systematic knowledge of BSS.

These techniques were developed into two different scenarios: monaural speech separation

and multi-channel speech separation. Because more remarkable quality improvement can

be achieved and a microphone array is much cheaper and more widely deployed than

before, multi-channel techniques will become more popular and attractive. This thesis

mainly talks about speech separation using more than one microphone. Multi-channel

2



Figure 1.2: Some application scenarios of solution to the cocktail party problem. (a) Voice
assistant. (b) Hand-free communication. (c) Virtual meeting. (d) Humanoid robot.

speech separation can be classified as:

1. Binary masking based on spatial cues, e.g., [4, 14].

2. Cancellation kernel via background learning,e.g., [3, 15].

3. Spatial filtering, or beamforming, e.g., [9, 16, 17].

4. Independent component analysis (ICA), e.g., [5, 18].

5. Non-negative matrix factorization (NMF),e.g., [7, 19].

6. l1 minimization based sparse signal separation,e.g., [20–22].

7. Others, e.g., [8].

There are so many different kinds of algorithms, we have only listed some of them. All of

these algorithms have their own strengths and limitations. In recent years, some people

3



have combined different methods to make up for each other’s shortcomings and better

performance has been obtained, for example, by combining ICA and NMF [6], binary

masking and spatial filtering [23], etc.

Based on the existing algorithm, this thesis makes improvements by analyzing their

advantages and disadvantages and combining the characteristics of speech signals. Com-

pared with the existing algorithm, the new algorithm takes their essence, removes their

dross, inherits their advantages, and improves their shortcomings.

1.1.3 Characteristics of speech signals

Let’s observe the spectrograms of two speech signals. As shown in Fig. 1.3, although the

two speech signals overlap in the time domain, their spectrograms do not overlap for a

considerable part. This special structure can not only help us to obtain the information

of the mixing process, in fact, there are many studies on how to estimate the mixing

process by identifying the disjoint part [24–26] but also bearing this structure in mind

can help us better reconstruct speech signals. However, many algorithms do not take this

partially disjoint structure into account when reconstructing speech signals. For example,

ICA only considers the signals to be independent of each other, or they over assume

this structure, as in binary masking which over assumes that the signals are completely

disjoint. This thesis explores how to exploit this partially disjoint relationship to separate

speech signals.

1.2 Contributions

There are three major contributions of this thesis

• Improving cancellation kernel: the new algorithm greatly weakens the condition for

using the original algorithm, has an analytical expression, and has comparable or

better performance.

• Improving degenerate unmixing estimation techniques (DUET): the improved algo-

rithm has a much better performance than the original algorithms and many other

mainstream BSS algorithms.
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Figure 1.3: From top to bottom, waveform and spectrogram of two speech signals, re-
spectively. Speech source 1 is colored red, and speech source 2 is colored green. In the
spectrogram, the blue region is where the red and green region overlap.

• Improving l1 minimization: the proposed algorithm not only improves the perfor-

mance, but also reduces the time consumption.

Cancellation kernel is used to extract a very weak target signal from mixed signals. But

computing the kernel is slow for real-time processing and requires an interval where the

target signal is inactive. Our first contribution is to extend the cancellation kernel from

the time domain to the time-frequency domain by applying the short-time Fourier trans-

form (STFT). Compared to the existing cancellation kernel that only can be computed

iteratively, the new cancellation kernel has analytic expression, making its computation

more convenient and in-depth analysis possible. For the performance, the new version

of the cancellation kernel has a comparable, even better performance than the previous

one. Moreover, the proposed cancellation kernel can be computed even without the time

interval where the target signal is inactive.

DUET is a binary masking-based method separating theoretically any number of
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sources with two microphones. It is simple and cost-effective but the performance is

not satisfactory. One reason is that binary masking can not completely separate the

speech signal. The second contribution of this thesis is we propose to use spatial filter,

which is essentially a weighted summation, as a post-filtering. The results show that our

proposed method is not only far superior to DUET, but also faster and more effective

than some mainstream blind source separation algorithms.

In our third contribution, we improved the l1 minimization for speech separation. l1
minimization is a convex optimization framework aiming to estimate the original signals

by minimizing the l1 norm of feasible signals under some fidelity constraints. The optimal

solution of l1 minimization is sparse, i.e., it only depends on a few non-zero coefficients. If

the original solution is sparse enough, there is a good chance that they are equal. When

the signals are speech signals, we find there is a better alternative than l1 minimization,

that is weighted l1 minimization. We propose to use a weighted l1 norm as the opti-

mization objective. By different penalties for different coefficients in the solution, we can

obtain a more sparse solution that may be closer to the original solution. Experiments

show that our proposed weighted l1 minimization indeed outperforms the plain l1 mini-

mization. This superiority is robust to disturbances on fidelity constraints. In addition,

theoretically, the proposed weighted l1 minimization has the same algorithm time com-

plexity as plain l1 minimization but in practice, it can approach convergence more quickly.

Better performance can be obtained by introducing a reweighted scheme, that is, using

the solution of previous weighted l1 minimization as the current weights.

1.3 Outline

The rest of the thesis is divided into five chapters. Chapter 2 starts from the physics of

sound and derives from the wave equation two principles of sound - superposition and

reflection. Based on the two principles, we can have the time domain model describing

the relationship between the source signals and the received signals by microphones. The

time-domain model can be converted to a time-frequency domain model via the short-time

Fourier transform. Chapter 3 to chapter 5 are the main body of this thesis. We introduce

cancellation kernel, DUET, and l1 minimization and their improvements, respectively.

Chapter 6 summarizes this thesis, reiterates our contributions, and points out current
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limitations and some interesting future work.
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Chapter 2

Mathematical Models for BSS

In this chapter, we will cover some of the physics of sound, including how it is produced,

how it propagates, and its equations of motion. Then we will introduce some mathematical

models for blind source separation (BSS). These models are equations that assume the

relationship between observed mixed signals and source signals. Directly solving these

equations is literally impossible unless under some conditions, e.g., source signals are

independent or have some sparse representation. Depending on whether the Short-time

Fourier transform (STFT) is applied, these models can be divided into two categories,

one that describes their relationship in the time domain and the other that describes their

relationship in the time-frequency domain. Finally, we will compare the advantages and

disadvantages of these two types of models.

2.1 Physics

2.1.1 Transmission of sound

Sound is produced by a fast vibration of an object. When an object vibrates, the sur-

rounding air in the direction of motion is compressed. Note that, this vibration must be

fast enough or the surrounding air will just flow over the object, not be compressed. The

compressed air will generate extra pressure, pushing the air around it. The propelled air

is compressed again, and so on, and the vibration of the air spreads out. When the state

of local motion of the air caused by the extra pressure is propagated to the human ear, the

eardrum is hit by the moving air, creating a perceptual stimulus that is finally perceived

by the human brain as sound. We also commonly refer to airborne vibrations as sound.

In addition to the propagation of sound in the gas, sound can also propagate in liquids or

8



even solids, and the principle is the same as that in the gas, except that the propagation

speed is different. Generally, the sound propagation in a solid is the fastest, slower in a

liquid, and slowest in a gas. The speed of sound in air is about 343 meters per second at

20◦C. It highly depends on the temperature but is nearly independent of frequency.

2.1.2 Wave equation

As we explained that sound is actually a vibration that propagates through air1 , it is

natural to ask how the air moves with the time given a certain space position, or how

the movement of air varies with space at a given moment. We first consider the simplest

situation where sound only propagates in one direction but this is enough to draw out

some properties of sound. Denote χ(x, t) the displacement of air at space position x

and time t. Assuming the extra pressure due to the vibration of air is relatively small

compared to the air pressure at equilibrium, then it can be deduced from Newton’s laws

of motion that χ(x, t) satisfies the following second-order partial differential equation

∂2χ

∂x2 = 1
κ
∂2χ

∂t2
, (2.1.1)

where κ is the ratio of changing pressure Pε and changing air density ρε at the equilib-

rium state (equilibratory air will be compressed and its density will change when sound

propagates)

κ = Pε
ρε

=
(

dP
dρ

)
0
. (2.1.2)

Now we examine by the motion equation (2.1.1) that whether the sound is a propagated

vibration as we described before. If the status of air vibration propagates in a direction,

then χ(x, t) has to satisfy the function formation f(x − vt) where v is the speed of

propagation. Now we substitute χ(x, t) = f(x − vt) into (2.1.1), then we realize that

f(x − vt) is a solution of (2.1.1) if v = ±
√
κ where +

√
κ means sound propagates

in the positive direction, and −
√
κ means sound propagates in the negative direction.

Therefore, we verified that sound is a propagating vibration by its motion equation (2.1.1)

and and have obtained a byproduct that the speed of sound depends on the property of

the propagation medium, specifically, the response of its pressure to the change of density.

Equation (2.1.1) is therefore named the wave equation, and sound is also called sound

wave.
1Actually sound can travel the same way in a liquid, or in a solid, but we only mention air here since

our topic is speech and speech normally propagates in air

9



2.1.3 Superposition & reflection of sound

If there are two sound waves, χ1(x, t) and χ2(x, t), meet at the same location, then they

will be superposed there, resulting in a third sound wave χ3(x, t) = χ1(x, t) + χ2(x, t).

This is called the superposition principle. It can be easily proved that if χ1(x, t) and

χ2(x, t) satisfy the wave equation (2.1.1), then χ3(x, t) also satisfies the equation, hence,

the superposition principle does not violate the laws of motion.

Sound is a wave just like light, and a sound wave also has the properties of reflection,

refraction, and diffraction that a light wave has. In this thesis, we do an appropriate sim-

plification and only focus on the reflection of sound. This is reasonable because for sound

waves, reflection effects are the most common and obvious in real life, while refraction and

diffraction are relatively negligible. We will use the following example to elicit the princi-

ple of reflection. Consider a sound wave hitting a rigid object with dimensions much larger

than its wavelength, e.g., a wall. We consider a rigid object because we don’t want to

consider refraction (a refracted sound wave can not be created in a rigid object since such

an object can not be compressed), and we consider objects with dimensions larger than

sound wavelength because we want to avoid involving diffraction. In the one-dimensional

case2 , the general solution to the wave equation (2.1.1) is χ(x, t) = f(x− vt) + g(x+ vt).

Due to the displacement at the hitting point (assuming it is the origin point) is zero, sub-

stituting this boundary condition into the general solution of the wave equation, then we

can have the motion of sound when reflection happens: χ(x, t) = f(x− vt)− f(−x− vt).

If we reverse the superposition principle, we will realize the χ(x, t) is a superposition of

two identical waves, except with opposite vibration and propagation direction. One wave

is the incident wave, and the other wave is called the reflected wave. Normally, we call

the wave moving toward the wall the incident wave, and the wave moving away from the

wall the reflected wave. From the above discussion, we can conclude that the principle of

reflection is to treat the wall as a mirror, and the reflected wave from the virtual sound

source that is mirror-symmetrical with the real sound source continues to propagate for-

ward through the hitting point. Note that, the reflected wave has the opposite vibration

to the incident wave, or we say the reflected wave has a 180◦ phase difference with the

incident wave. This is the discussion in the mathematical sense, and when we go back to

the physical world, we can only observe the waveform on the air side while the waveform
2One-dimensional case is enough to draw out the reflection principle.
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on the wall side can only be imagined.

Although we only discussed a simple case in one-dimension3 , we already have enough

principles and intuition to develop mathematical models for BSS.

2.2 Time Domain Model

The time-domain model assumes the relationship between source signals and mixed signals

in the time domain. This model is very straightforward and easy to understand because

building it only needs the superposition and reflection principles (see Sec. 2.1.3 for the

two principles) which are very intuitive. When there is a point sound source at point j

in a room, the sound field at another point i in the room is a superposition of the direct

sound wave from this point sound source and reflected wave from the wall of the room.

Note that the assumptions here, we assume that the sound source is a point sound source,

and if the sound source is not a point sound source, e.g., wind, the time domain model

is not valid anymore. Fortunately, if the room is quite large and the distance between

point j and point i is far, it is reasonable to treat a human speaker as an ideal point sound

source. Denote sj(t) as the sound source at point j, according to the superposition and

reflection principles, the sound field at point i is

xi(t) =
∞∑
τ=0

aij(τ)sj(t− τ), (2.2.1)

where aij(τ) is called the room impulse response (RIR) or acoustic impulse response

(AIR) in literature, which can be a positive or negative real value. When there is no

reverberation, RIR from point j to point i is

aij(t) = 1√
4πdij

1t−dij/c, (2.2.2)

where dij is the distance between point i and point j, 1√
4πdij

is the propagation attenuation

since the energy of sound is radiated out in the form of a sphere, 1t−dij/c = 1 when

t − dij/c = 0 and 0 otherwise, dij/c is the propagation time of sound between point j

and point i, and c is the velocity of sound, around 343 m/s at 20◦C. RIR like (2.2.2)

only considers the direct path from the sound point to the microphone. In general, an

RIR does not only contain the propagation attenuation and delay of the direct path, it
3For a more complicated case in three-dimension, we can always obtain the motion of sound by solving

the wave equation under the boundary conditions.
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also contains the attenuation, delay, and 180◦ phase difference of the reflected path. Note

that, we assume that the wall in the room is not a completely rigid object now, so it will

absorb the energy4 of sound, hence, the reflected wave will be weaker than the incident

wave. If define the absorption coefficients α the ratio of absorbed energy to the incident

sound energy per unit of area of material, it is around the level of 0.04 on a natural brick

wall, 0.02 on a painted brick wall, 0.1 on plywood, 0.07 on a wood floor and concrete

floor5 , etc. Note that, the absorption coefficient varies in different frequencies, the above

values are an average overall frequency range.

Observe (2.2.1), if sj is an impulse signal, i.e., sj(0) = 1, and sj(t) = 0, ∀t > 0, then

xi(t) = aij(t). Therefore, one can measure aij(t) by producing an impulse signal at point

j and collecting the response signal at point i. Figure 2.1 depicts6 a real room impulse

response from dEchorate [1] dataset. As shown in the figure, an RIR can be divided into

Figure 2.1: Depiction of a first 100 ms of real room impulse response from [1].

three parts. The first part that is colored blue, called direct path, is the impulse signal

that travels from the source point i to the measurement point j via a straight path, so

this part has the least time delay and the strongest amplitude. The second part which is

colored yellow, called early echoes, consists of the earliest batches of echoes. At this time,
4The absorbed energy will exist in the form of a refracted wave. This will not happen in a completely

rigid object because such an object can not be compressed, so a refracted wave can not be created.
5The above absorption coefficients of materials are all from this web page ”https://www.acoustic-

supplies.com/absorption-coefficient-chart/”
6The figure is copied from the paper [1] and modified by the author of this thesis.
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these reflected sound waves can still be distinguished from each other due to their rarity.

But after a while, as the number of reflections increases, the reflected sound waves become

indistinguishable and the amplitude decays exponentially, and this is the third part that

is colored green, called the late reverberation. The amplitude of the reflected sound wave

in the late reverberation decays exponentially. There is a term called reverberation time

60 dB, RT60, to quantify the time that it takes the sound to fade away. The definition of

RT60 is the time it takes for the sound pressure level of the reflections to reduce by 60 dB

compared to the first arrival sound. RT60 depends on the volume of the room, materials

of the wall, furniture inside the room, etc. The RT60 is about 0 outdoors due to lack of

planes to provide reflections, around 50 ms in a car, 0.3 s in a recording room (volume less

than 50 m3), 0.4s - 0.6s in a classroom (volume less than 200 m3), 1.4 - 2.0 in a concert

hall (volume less than 20’000 m3), 2 - 10 s in a church, etc7 .

Considering multiple sound sources and noise, by the superposition principle, (2.2.1)

can be more generalized expressed as

xi(t) =
J∑
j=1

(aij ∗ sj)(t) + ni(t), (2.2.3)

, where * is the convolution operator, J is the number of sources, ni(t) is noise signal. In

this thesis, we only focus on the speech separation rather than noise deduction, hence, we

assume ni(t) = 0. We also only consider the separation when sound sources are static,

i.e, not moving.

2.3 Time-frequency Domain Model

Although the time domain model is straightforward and accurately describes the relation-

ship between the source signals and mixed signals, convolution is not mathematically easy

to handle, in addition, an RIR in the presence of mild or moderate reverberation consists

of hundreds or even thousands of coefficients, which greatly increases the difficulty of

processing. By applying the Short-time Fourier transform (STFT) [27], this limitation

can be addressed.
7Part of above values come from the web page ”https://www.nti-audio.com/en/applications/room-

building-acoustics/reverberation-time”
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2.3.1 Multiplicative model

Applying STFT on the left hand and right hand of the equation (2.2.3), we can have a

new equation that describes the relationship between the STFT coefficients of the sound

field observed by microphone at the point i xi(t, f) and source signal at the point j sj(t, f):

xi(t, f) =
J∑
j=1

aij(f)sj(t, f) + ni(t, f), (2.3.1)

where aij(f) called the acoustic transfer function (ATF) is the Fourier transform of RIR

aij(t), and ni(t, f) is the STFT coefficients of the noise signal ni(t). For example, when

there is no reverberation, the ATF from point j to point i is the Fourier transform

of (2.2.2):

aij(f) = 1√
4πdij

exp−ı2πfdij/c, (2.3.2)

where ı =
√
−1. Note that, in order to transform (2.2.3) into (2.3.1) accurately, the win-

dow length of STFT must be longer than twice of the length of RIR. In literature [20, 22],

they claim that (2.3.1) is valid when the STFT window length is longer than the length of

RIR. A suitable STFT window length with respect to the length of RIR has been studied

in [28]. We also investigate the effect of the STFT window length on our speech separa-

tion methods in this thesis. Two contributions have been made by (2.3.1). First, it turns

convolution in (2.2.3) into multiplication, which provides convenience in math. Second,

each frequency band can be dealt with independently, which greatly reduces the number

of parameters or model complexity. However, there are two new problems introduced

by (2.3.1). The first problem is called the scale ambiguity, that is the ambiguity in de-

termining the variance (energy) of source signal sj(t, f) since any scale on sj(t, f) can be

cancelled by dividing aij(f) by the same scale. In independent component analysis (ICA),

the scale ambiguity is solved by assuming sj(t, f) has a unit variance, i.e., ∑t s
2
j(t, f) = 1

(assuming that sj(t, f) has zero mean). Another alternative is normalizing the amplitude

of aij(f), such as the relative transfer function (RTF) defined in [29]

ãij(f) = aij(f)/a1j(f), ∀j. (2.3.3)

Obviously, by choosing different reference microphone, there are different RTFs. To elim-

inate this difference, one can normalize the ATF by

ãij(f) = aij(f)/
√∑

i

a2
ij(f), ∀j, (2.3.4)
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which is often used in the l1 minimization based speech separation.

The second problem of the multiplicative model (2.3.1) is the permutation ambiguity,

which is the ambiguity in determining the order of sources for each frequency band. For

example, assume that we have two source signal estimations for two frequency bands,

respectively: ŝ1(t, f1) and ŝ1(t, f2), but they may be corresponding to different sources

since we dealt with the two frequency bands independently. A typical framework solving

the permutation ambiguity is to apply some alignment methods [30, 31] to the separated

frequency-wise signals.

2.3.2 Convolutive model

The multiplicative model (2.3.1) is valid when the STFT window length is larger than the

RIR length. But a too long STFT window will reduce the performance of a separation

algorithm (see the discussion in the next section). The authors in [32] made it possible

to represent longer reverberations with shorter STFT windows by using a convolutional

model:

xi(t, f) =
J∑
j=1

∑
τ

aij(τ, f)sj(t− τ, f) + ni(t, f), (2.3.5)

where aij(t, f) is called the convolutive transfer function (CTF) from the j-th source to

the i-th microphone. This time-frequency domain convolution model was rarely used

because it is more complex and requires more parameter estimation, but recently it has

been slowly used to deal with high reverberation speech separation problems.

2.4 Limitation of Reverberation

The most tractable model of the above should be the multiplicative model in the time-

frequency domain (see Sec. 2.3.1). This model is also called the narrowband approximation

model in literature [33]. As the most prevalent model, the narrowband approximation

model significantly simplifies the blind source separation (BSS) process: 1. The required

convolution operation in the time domain model is converted to a multiplication in the

frequency domain, which makes analytical processing more easier. 2. Each frequency

band is treated independently to reduce the dimension of the problem. However, there

is a limitation for the narrowband approximation model in the presence of reverberation.

On the one hand, this model only holds when the window length of STFT is sufficiently
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long, proportional to the reverberation time 60 dB (RT60, see Sec. 2.2). on the other

hand, a longer window length will add more frequency bands and reduce the number of

time frames which can be used to train the parameters of each frequency band. Hence, it

is not surprising that longer reverberation results in poor separation performance in the

experimental part of some BSS algorithm literature [6, 8, 22]. In different scenarios, an

optimal window length is determined by the trade-off between obtaining enough training

data and model complexity [28]. This is a fundamental limitation of the narrowband

approximation model. There are algorithms obtaining a better result with a shorter

window length of STFT by using the convolutive model (see Sec. 2.3.2) [22, 34–36] and full-

rank covariance model [8] in the time-frequency domain. Nevertheless, their performance

is still underwhelming under a severe reverberant environment with RT60 longer than 500

ms, and they are more time consuming.

The best performing BSS models under reverberation would be the time domain model

(see Sec. 2.2), also known as the wideband model [20, 28]. The wideband model is derived

directly based on the superposition and reflection principle. It is the best fit model for

the real physical world under reasonable simplification. Although a good performance

has been demonstrated under a high reverberant condition (RT60=890 ms), they assumed

that the room impulse responses (RIRs) were known in advance, limiting the practical

use. Since it is challenging to simultaneously estimate each source’s RIR from a mixture

signal, solving BSS using the wideband model is still a long-term goal.

In summary, reverberation is a difficulty in BSS. For the time-frequency domain BSS,

there is a trade-off between the large number of parameters to cover a long reverberation

and the lack of data to train these parameters as explained above. Even the observed

signals are sufficiently long, high-latency processing and complex computations that ac-

company long window length are still problems in the real application. For the time

domain BSS, accurately and robustly estimating the RIR of each source from a mixture

signal remains a challenge. High computational cost is another limitation.

The above discussions are all non-deep learning based models. For the deep learning

based model, it can be observed that reverberation still significantly reduces the final

performance in the task of speech enhancement [37–40]. One of the reason may be the

trade-off between the complexity of the deep learning model and the amount of training

data. Even with sufficient data, over-fitting of a complicated model is also an issue when
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there is no reverberation
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Chapter 3

Improving cancellation kernel

There are various blind source separation (BSS) algorithms applied to solve the cocktail

party problem according to different scenarios or conditions. They have their own ad-

vantages and limitations respectively. Cancellation kernel, first proposed by Wang and

Zhou [15], has its uniqueness to extract the target signals when the target signals are

much weaker than the interference (i.e., unwanted) signals. The idea is to ”learn” a set

of convolutive kernels from an interval where the target signals are inactive (hereafter,

referred to as the silent interval). Once the kernels are calculated, the interference sig-

nals can be removed by a summation of convolutions between the mixed signals and the

convolutive kernels, and only the target signals remain (therefore, the convolution kernels

are called the cancellation kernels). Convolution can be done very fast, hence, real-time

extraction is another advantage for the cancellation kernel. It is proved in [15] that there

exist such cancellation kernels which can completely remove the interference signals by

a summation of convolutions. They also formulated quadratic programming with non-

negative constraints to compute the cancellation kernels. Although the extracted signal

is distorted because of the convolution, its intelligibility is not compromised, and it is less

annoying than an ”unclean” signal generated by independent component analysis (ICA)

based methods and binary masking based methods. Further, Yu et al. [3] proposed to

use l1 regularization to regulate the kernels instead of non-negative constraints and used

a split Bregman algorithm to compute the kernels. By doing so, the kernels are more

sparse (i.e., have more zero coefficients), hence, introducing less distortion. The comput-

ing speed is also improved by using the split Bregman algorithm. For more details please

see Sec. 3.1.

However, there are two problems with the current cancellation kernel method. First,

even for the computationally efficient version - the l1 regularized kernel, the computation of
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the kernel is rather slow. Moreover, any movement of the interference signal source or the

change of the reverberation environment requires recalculation of the cancellation kernel,

which severely limits the real-time use. The second problem is that the computation

of kernels requires a silent interval and this is very inconvenient and limits practical

applications. In this thesis, a new version of the cancellation kernel, called interference

suppression response (ISR), is proposed to be faster and more convenient to use. We

use the Short-time Fourier transform (STFT) to transform the time-series signals into

time-varying, multi-frequency bands signals. As different frequency bands are assumed

to be independent of each other, we deal with them separately. For each frequency band,

the mixing model is simpler than that in the time domain, and the length of ISR can be

much shorter than previous cancellation kernels. This enables us to compute the kernels

by formulating quadratic programming having an analytic solution. Finally, the inverse

STFT will be used to transform the time-varying, multi-frequency band signal back to

the time-series signal. Compared to the previous cancellation kernel, the proposed ISR

has two extra advantages. First, due to the existence of an analytic solution, the time of

computing ISR is negligible. The only time consuming part is the STFT and the inverse

STFT but both of them can be done in real-time. Second, it is not necessary to compute

ISR by finding a silent interval. Because speech signals will not completely overlap in the

time-frequency domain (see Sec. 1.1.3), sufficient information can be obtained to compute

ISR from the partially-disjoint region, which we will demonstrate in our second work

in chapter 4. The high efficiency makes ISR more suitable in a dynamic environment,

the analytic solution makes deeper analysis possible, and with no requirement of silent

interval makes ISR more practical..

3.1 Cancellation Kernel

Let us consider the simplest case for signal separation, that is, there are two microphones

and two signal sources. Denote x1(t), x2(t) the mixed signals received by the two micro-

phones respectively, and s1(t), s2(t) the two source signals, respectively. According to the

multi-source time domain model (2.2.3), assuming there is no noise, they satisfy

x1(t) = (a11 ∗ s1)(t) + (a12 ∗ s2)(t),

x2(t) = (a21 ∗ s1)(t) + (a22 ∗ s2)(t),
(3.1.1)
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where ∗ is the linear convolution operation, aij for i = 1, 2 and j = 1, 2 are the room

impulse responses (RIRs, see Sec. 2.2) from j-th source to the i-th microphone. If s2(t) is

the target signal in which we are interested, s1(t) is the interference signal which we want

to get rid of, we can have two cancellation kernels b1 = a21 and b2 = −a11 such that the

interference signal s1 can be removed by (b1 ∗ x1) + (b2 ∗ x2) = (b1 ∗ a12 + b2 ∗ a22) ∗ s2.

Although the target signal is subject to another convolution, the intelligibility of the target

signal is not affected according to our perception. In addition, the convolution is moderate

if we can have a short and not dense cancellation kernel, and a human auditory system

seems less sensitive to moderate convolution than artifacts generated by ICA or binary

masking-based methods. In general, if there are I microphones, J signal sources, from 1

to P are interference signal sources, is there a group of cancellation kernels b1, . . . , bI such

that
I∑
i=1

bi ∗ xi =
J∑

j=P+1
(
I∑
i=1

bi ∗ aij) ∗ sj. (3.1.2)

It has been already proved in [15] that such non-all-zero cancellation kernels exist as long

as the number of microphones is strictly larger than the number of interference signal

sources, i.e., I > P .

3.1.1 Background learning

The next question is how to compute the cancellation kernels. For the simplest case, i.e.,

two microphone and two signal sources, if s1 is the target signal, then you can set b1 = a22

and b2 = −a12. Generally, if there are I microphones, J signal sources, from 1 to P are

interference signal sources, cancellation kernels should satisfy
I∑
i=1

bi ∗ aij = 0, ∀j = 1, . . . , P. (3.1.3)

But the problem is that we do not know aij. The solution given in [15] is to find a time

interval α ≤ t ≤ ω where only the target signals sP , . . . , sJ are inactive or silent, that is,

in the time interval α ≤ t ≤ ω, sP (t) = · · · = sJ(t) = 0, and all the interference signals

s1, . . . , sP are non-silent, cancellation kernels can be calculated by minimizing the cost

function

F (b1, . . . , bI , α, ω) =
∑

α≤t≤ω
|
I∑
i=1

(bi ∗ xi1α≤t≤ω)(t)|2, (3.1.4)

where xi1α≤t≤ω(t) = xi(t) for α ≤ t ≤ ω and 0 otherwise. The time interval α ≤

t ≤ ω where the target signals are silent is called the silent interval. Fig. 3.1 depicts a

20



silent interval when there are only one target signal and one interference signal. This

thesis assumes the silent interval can be and has been successfully detected. The design

of the detection algorithms is closely related to practical applications. Depending on

the subjective definition of the target signal and the interference signal, a number of

completely different silent interval detection algorithms can be designed to detect the silent

interval by detecting direction of the signal, speech or non-speech, male or female voice,

etc. One can design a detection algorithm using the different angles of the target signal and

the interference signal [3], or based on some speech activity detection algorithms [41, 42].

Figure 3.1: Depiction of a silent interval of one target signal. From top to bottom: the
target signal, the interference signal. The range (around 2.5 s to 5 s) between the two red
line is the silent interval for the target signal.

Minimizing the cost function (3.1.4) without any constraint will not get you ideal

cancellation kernels. There are at least three issues. First, you may get trivial all zero

solutions, that is, b1, . . . , bI = 0. Second, solutions are not unique. For example, if

b∗1, . . . , b
∗
I are solutions, then cb∗1, . . . , cb∗I are also solutions where c is an arbitrary constant.

Third, you may obtain dense cancellation kernels which results in an over-fitting problem

and seriously distorted the target signal as we mentioned in Sec. 3.1, the extracted target

signals are subject to the further convolution of cancellation kernels. Therefore, aiming at

the three issues, some constraints of cancellation kernels must be imposed to avoid trivial

21



all zero solutions, to obtain unique and sparse solutions. We will introduce two different

versions of the cancellation kernel from different constraints or regulations in Sec. 3.1.2

and Sec. 3.1.3, respectively. However, both versions of the cancellation kernel are less

useful in practice. It can be seen from (3.1.3) that any change in aij (e.g., interference

source movement or change of reverberant environment) will change bi, so in practice

it is often necessary to recalculate bi, but both versions of the cancellation kernel take

some time to calculate and do not support real-time processing. This led us to invent the

ISR, a time-frequency version of the cancellation kernel and having analytical expression

that allow it to update in real-time in a dynamic environment. We will introduce ISR in

Sec. 3.2.

3.1.2 Non-negative cancellation kernel

Imposing constraints is necessary for computing cancellation kernels as we just explained.

In [15], the authors proposed a non-negative constraint, that is, b1 ≥ 0, . . . , bI ≥ 0. We

call such cancellation kernels non-negative cancellation kernels. The authors also imposed

a constraint to confirm the uniqueness of the solution, that is, ∑I
i=1 bi(1) = 1 where bi(1)

is the first coefficient of the i-th cancellation kernel. Non-negative cancellation kernels

can be calculated via quadratic programming in the case of two microphones, i.e., two

mixed signals, and two source signals. Suppose the length of each cancellation kernel is

L, define t′ = t+ 1 for brevity, rewrite the cost function (3.1.4) as

F (b1, . . . , bI , α, ω) =
∑

α≤t≤ω
|
I∑
i=1

(bi ∗ xi1α≤t≤ω)(t)|2

=
∑

α≤t≤ω

(
L∑
l=1

(b1(l)x1(t′ − l)1t′−l≥α + b2(l)x2(t′ − l)1t′−l≥α)
)2

= bT1Ab1 + bT2Bb2 + 2bT1Cb2,

(3.1.5)

where (·)T is the transpose, A = [Aij], B = [Bij],and C = [Cij] with i, j = 1, . . . , L are

L× L matrices given by

Aij =
ω∑
t=α

x1(t′ − i)x1(t′ − j),

Bij =
ω∑
t=α

x2(t′ − i)x2(t′ − j),

Cij =
ω∑
t=α

x1(t′ − i)x2(t′ − j).

(3.1.6)
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Finally, the non-negative cancellation kernels can be computed by quadratic programming

min
b1,b2

bT1Ab1 + bT2Bb2 + 2bT1Cb2

s.t. b1 ≥ 0,

b2 ≥ 0,

b1(1) + b2(1) = 1.

(3.1.7)

Fig. 3.2 depicts two non-negative cancellation kernels, which is copied from [15] for self-

containment.

Figure 3.2: Depiction of two computed non-negative cancellation kernels. (a) The kernel
b1 that will be convolved with the mixed signal received by the first microphone. (b) The
kernel b2 that will be convolved with the mixed signal received by the second microphone.

3.1.3 l1 regularized cancellation kernel

In [3], the authors propose sparse cancellation kernels whose sparsity is pursued by min-

imizing the l1 norm of the kernels. Consider the simplest case where there are two mi-

crophones. Denote the mixed signals during a silent interval as d1 and d2, respectively.
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They formulated a non-constraint convex optimization problem for computing the sparse

cancellation kernels:

b1, b2 = arg min
b1,b2

1
2‖b1 ∗ d1 + b2 ∗ d2‖2

2 + η2

2 (b1(1) + b2(1)− 1)2 + µ(‖b1‖1 + ‖b2‖1), (3.1.8)

where η and µ are trade-off parameters for cross-channel cancellation and regularization,

and ‖ · ‖1 is the l1 norm. The first regularization term (b1(1) + b2(1) − 1)2 is to prevent

all-zero solution, and the second regularization term ‖b1‖1 +‖b2‖1 is to pursue the sparsity

of b1 and b2. In this thesis, we call this version of cancellation kernel as l1 regularized

cancellation kernel. Yu et al. [3] also propose to use a split Bergman method to solve

the optimization problem 3.1.8. It is claimed in [43] that compared to the non-negative

cancellation kernel [15], the l1 regularized cancellation kernel [3] is computationally effi-

cient and can suppress a little bit more of the interference signals. Fig. 3.3 depicts two l1
regularized cancellation kernels.

Figure 3.3: Depiction of two computed l1 regularized cancellation kernels. (a) The kernel
b1 that will be convolved with the mixed signal received by the first microphone. (b) The
kernel b2 that will be convolved with the mixed signal received by the second microphone.
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3.2 Improved Method

3.2.1 Multiplicative ISR

Let’s start with the simplest case where there are two microphones and two speech sources.

The difference with the cancellation kernel is that instead of considering the time domain

model (2.2), we use the time-frequency domain multiplicative model (2.3.1):

x1(t, f) = a11(f)s1(t, f) + a12(f)s2(t, f),

x2(t, f) = a21(f)s1(t, f) + a22(f)s2(t, f),
(3.2.1)

where x1(t, f) and x2(t, f) are the STFT coefficients of two mixed signals received by

two microphones at time frame t and frequency bin f , respectively; s1(t, f) and s2(t, f)

are the STFT coefficients of two speech source signals; aij(f) for i = 1, 2 and j = 1, 2

are the acoustic transfer functions (ATF) (see Sec. 2.3.1) from the j-th source to the

i-th microphone at the frequency bin f . Note that, here we assume there is no noisy

signals. If s2(t, f) is the target signal and s1(t, f) is the interference signal, we can

have two cancellation coefficients w1(f) = a21(f) and w2(f) = −a11(f) such that the

interference signal can be removed by w1(f)x1(t, f) + w2(f)x2(t, f) = (w1(f)a12(f) +

w2(f)a22(f))s2(t, f), where (·) means the conjugation.

In general, if there are I microphones, J signal sources, from 1 to P are interference

signal sources, denote x(t, f) = [x1(t, f), . . . , xI(t, f)]T, su(t, f) = [s1(t, f), . . . , sP (t, f)]T,

and st(t, f) = [sP+1(t, f), . . . , sJ(t, f)]T the STFT coefficients of the observed signals (i.e.,

mixed signals), interference signals, and target signals, respectively, we extend (3.2.1)

and rewrite it as the form of vector for compactness:

x(t, f) = Au(f)su(t, f) + At(f)st(t, f), (3.2.2)

where the j-th column of Au(f) is [a1j(f), . . . , aIj(f)]T for j = 1, . . . , P , and the j-th

column of At(f) is [a1(j+P )(f), . . . , aI(j+P )(f)]T for j = 1, . . . , J−P . Au(f) and At(f) are

also called the mixing matrix of interference signals and the target signals, respectively. To

remove the interference signals, the cancellation coefficients w(f) = [w1(f), . . . , wI(f)]T

should satisfy:

wH(f)Au(f) = 0, (3.2.3)

where (·)H denotes the Hermitian transpose. There are always non-all-zero solutions as

long as the number of microphones is strictly larger than the number of interference signal
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sources, i.e., I > P . The proof is omitted here as it is a fundamental knowledge of Linear

Algebra. Then we can estimate the target signals by

ŝt(t, f) = wH(f)x(t, f)

= (wH(f)At(f))st(t, f).
(3.2.4)

Since Au(f) is unknown, we adopt the background learning for computing w(f) (see

Sec. 3.1.1). A constraint is also needed for avoiding an all-zero solution. Here, we use

a singleton linear constraint w1(f) = 1. For the non-negative cancellation kernel (see

Sec. 3.1.2) and the l1 regularized cancellation kernel (see Sec. 3.1.3), the number of pa-

rameters of each kernel is very large, so it is necessary to introduce sparsity for a good

performance, but leads to the difficulty of calculation. However, for the proposed can-

cellation kernel in the time-frequency domain, i.e., w(f), different frequency bands are

dealt with independently and for each frequency band, there is only one parameter for

each kernel. Hence, there is no need to pursue a sparsity. This is a definite advantage

over the time domain cancellation kernel. Denote d(t, f) = [d1(t, f), . . . , dI(t, f)]T the

STFT coefficients of the mixed signals during the silent interval, w(f) can be computed

by solving the below quadratic convex optimization problem:

min
w(f)

∑
t

|wH(f)d(t, f)|2

s.t. w1(f) = 1.
(3.2.5)

The optimal solution of the above convex optimization problem has an analytic expression

which will be given in Sec. 3.2.2. To differentiate this time-frequency version cancellation

kernel from the time domain cancellation kernel introduced in Sec. 3.1, we call the time-

frequency version cancellation kernel the interference suppression response (ISR).

Computing frame by frame

Observe the optimization problem (3.2.5), the proposed ISR can be computed frame by

frame following a least mean square (LMS) adaptive filter optimization criteria. Here, we

directly give the frame-wise adaptive solution:

w
(t)
i (f) =


1 if i = 1

w
(t−1)
i (f)− µe(t,f)di(t,f)∑J

j=2 di(t,f)di(t,f)
2 ≤ i ≤ I

, (3.2.6)

where w(t)
i (f) is ISR updated at t-th time frame, e(t, f) = w(t)(f)Hd(t, f), and µ is learning

rate and for normalized least mean square filter (NLMS) the optimal value µopt = 1.
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Distortionless response

If there is only one target signal (denote its ATF by a(f)), the distortion on the tar-

get signal (see (3.2.4)) can be eliminated by the modified ISR w′ = (aHw)−1w, where

frequency index f is omitted for compactness.

3.2.2 Convolutive ISR

The time-frequency domain multiplicative model (2.3.1) becomes less accurate when the

room impulse response (RIR) length is longer than the STFT window length. Neverthe-

less, an STFT window that is too long will make ISR introduce more distortion on the

target signal, leading to poor performance. Therefore, it is not difficult to foresee that the

above ISR will not work well in a high reverberation environment. Here, we will apply

the time-frequency domain convolutive model (2.3.5) and design a convolutive version of

the ISR to cope with high reverberation environments.

Starting with the simplest case, that is, two microphones and two speech sources, con-

tinuing the notations from the previous section, the time-frequency convolutive model (2.3.5)

can be rewritten as:

x1(t, f) =
∑
τ

a11(τ, f) ∗ s1(t− τ, f) +
∑
τ

a12(τ, f) ∗ s2(t− τ, f),

x2(t, f) =
∑
τ

a21(τ, f) ∗ s1(t− τ, f) +
∑
τ

a22(τ, f) ∗ s2(t− τ, f),
(3.2.7)

where aij(t, f) for i = 1, 2 and j = 1, 2 is the convolutive transfer function (CTF) from

the j-th source to the i-th microphone. Since we deal with each frequency independently,

we omit the frequency index f in the rest of the section. Observe (3.2.7) and (3.1.1),

they have exactly the same expression if you open the convolution operation in (3.1.1).

Therefore, we derive the convolutive ISR following the same recipe of the cancellation

kernel. The two convolutive ISRs applied to two channels of mixed signal are denoted

as w1 = [w1(1), . . . , w1(K)]T and w2 = [w2(1), . . . , w2(K)]T, respectively, and the STFT

coefficients of two channels of mixed signal during the silent interval of target signals

are d1 = [d1(1), . . . , d1(LD)]T and d2 = [d2(1), . . . , d2(LD)]T, respectively, where K is the

length of the convolutive ISR and LD is the length of the silent interval. Since we only

consider a small K (in fact, a small K is enough as shown in our experiments), the pursuit

of sparsity as in [3] is redundant. Here, we propose a simple least squares formulation to
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AT
d :=



d1(1) . . . . . . d1(K) . . . d1(LD) 0 . . . 0 η1
0 d1(1) . . . d1(K − 1) . . . d1(LD − 1) d1(LD) 0 . . . 0
... . . . . . . 0 0
0 . . . 0 d1(1) . . . d1(LD −K + 1) . . . . . . d1(LD) 0

d2(1) . . . . . . d2(K) . . . d2(LD) 0 . . . 0 η2
0 d2(1) . . . d2(K − 1) . . . d2(LD − 1) d2(LD) 0 . . . 0
... . . . . . . 0 0
0 . . . 0 d2(1) . . . d2(LD −K + 1) . . . . . . d2(LD) 0


,

(3.2.9)

compute w1 and w2:

(w1,w2) = arg min
w1,w2

‖w1 ∗ d1 + w2 ∗ d2‖2
2

+η2(η1

η
w1(1) + η2

η
w2(1)− 1)2,

(3.2.8)

where w1(1) and w2(1) are the first entry of w1 and w2, respectively, and η, η1, η2 are

parameters for generalization. The more elegant formulation can be given by defining a

matrix Ad ∈ C(LD+K)×2K (see (3.2.9)). Concatenate w1 and w2 into w := [w1,w2]T ∈

C2K×1 and define f := [0, . . . , 0, η]T ∈ C(LD+K)×1, then (3.2.8) will be formulated more

compactly:

w = arg min
w
‖Adw− f‖2

2. (3.2.10)

The solution of the least squares (3.2.10) is given below

w = lim
ε→0

(AH
dAd + εI)−1AH

d f , (3.2.11)

To generalize the convolutive ISR to any number of microphones is trivial, just extend w,

Ad, and f . In fact, the convolutive ISR is a generalization version of the multiplicative

ISR: if we set η = η1 → ∞, η2 = 0 and K = 1, the least squares (3.2.8) converges to

the quadratic optimization problem (3.2.5). Hence, the solution of (3.2.5) can also be

approximated by (3.2.11).

3.3 Experiment

Simulation experiments were conducted in Matlab R2019a and the system was Ubuntu

18.04.4 LTS with Intel Core i9-9900K CPU @ 3.60GHz X 16 and 62.7GiB memory. All

simulation experiments in this thesis use this setting. Ten groups of speech signals were
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collected from the data packages dev1 and dev2 in SiSEC2011 [44]. These data packages

were widely used in literature [22, 45] and have 16 male and 16 female vocals in differ-

ent languages. Although the voice files sound less emotional (unlike natural speech), our

results still apply to natural speech because the evaluation metrics we use do not mea-

sure emotion. Each speech signal was sampled at 16kHz and had 10 seconds duration,

containing four simple sentences. These speech signals were convolved by room impulse

responses (RIRs), and then summed to obtain 10 groups of mixed speech signals. The

RIRs were generated by the software pyroomaoustics [2] using the image method. The

software simulated a virtual room with the size of dimension 4.45 m × 3.55 m × 2.5 m.

Two microphones with a spacing distance of 5 cm or three microphones with a spacing

distance of 2.5 cm were set at the center of the room with a height of 1.4 m. There are

also two or three loudspeakers were put at the height of 1.6 m and 1 m away from the

microphones. For two loudspeakers, they were put at −50◦ and 45◦ azimuth angle. For

three loudspeakers, they were put at −50◦, −10◦, and 45◦ azimuth angle. The azimuth

angle is defined as follows: The front of the mid-point of microphones was defined 0◦.

Azimuth angle increased anticlockwise and decreased clockwise. For example, the right

hand of the mid-point is −90◦, and 90◦ represents the left hand of the mid-point. We do

not specify the angle of the target signal and the interfering signal, the end result is the

average of all possible cases. This avoids introducing bias due to the choice of the target

signal angle. Another advantage of this average is to avoid introducing a bias due to the

selection of gender voice as the target signal. Figure 3.4 shows a top view of the virtual

room. There are three microphones and three loudspeakers inside the room. Note that,

the figure is just a schematic without the true scale. A RIR generated by the software

pyroomacoustics is shown in figure 3.5. Since we are only interested in evaluating the

separation performance of the ISR, not including silent interval detection, we therefore

skip the silent interval detection and tell the algorithm where the silent interval is.

The performance of speech separation are measured by source-to-distortion ratio (SDR),

source-to-interference ratio (SIR), and source-to-artifact ratio (SAR) [46]. They are widely

accepted metrics in speech separation. It involves two successive steps to compute them.

First of all, a speech estimate ŝ can be decomposed into three part:

ŝ = starget + einterf + eartif , (3.3.1)

where starget is the target signal, einterf is the interference error term coming from the
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Figure 3.4: A schematic diagram (top view) of the virtual room used in experiments to
evaluate speech separation algorithms.

interference signals, and eartif is the artifact error term from other causes, like systematic

distortion. Sometimes there is the fourth term called noise error term enoise introduced

by noise signal, like background noise, but we ignore it because the goal is to test the

separation performance, not denoising, so there is no noise signal. The three components

can be estimated by the projection of ŝ on different subspaces expanded by original speech

signals. Then, SDR, SIR, and SAR are computed by energy ratios in dB:

SDR := 10 log10
‖starget‖2

2
‖einterf + eartif‖2

2
,

SIR := 10 log10
‖starget‖2

2
‖einterf‖2

2
,

SAR := 10 log10
‖starget + einterf‖2

2
‖eartif‖2

2
,

(3.3.2)

where ‖·‖2
2 denotes square of the l2 norm. For all the three metrics, the larger, the better,

and SDR is a more comprehensive measurement since it considers both interference error

einterf and artifact error eartif . A larger SDR means the estimated signal is closer to the

true signal, a larger SIR means the interference signals are removed cleanly, and a larger

SAR means fewer artifacts distortion.
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Figure 3.5: Depiction of a room impulse response (RIR) generated by the software py-
roomacoustics [2].

3.4 Experiment Result

3.4.1 Effect of the STFT window length

We first examine the effect of the STFT window length (Fig. 3.6). The length of the STFT

window varies from 128 to 1024. A 0.5-second silence interval is used to compute the ISR

with lengths 1 (K=1) and 14 (K=14), respectively. Roughly speaking, as the window

length increases, SDR decreases, SIR increases, and SAR decreases. When window length

is longer, the cancellation model is more accurate, so SIR is larger. But a longer window

length will result in more distortion on the target signal, so SAR decreases, and SDR, as

a comprehensive measurement, also decreases along with SAR. Actually, this distortion

sounds like the signal is being filtered by some kind of high pass filter, but the distortion

is slight and doesn’t affect the understanding of the sentence. For K=14, SIR decreases

at window length 1024. We think this is because the data appears inadequate to compute

ISR. Another observation is that an ISR of length 1 has a larger SAR than an ISR of

length 14, so a shorter ISR will bring less distortion.

3.4.2 Effect of the length of silent interval

The second experiment tests the effect of the silent interval length (Fig. 3.7). The length

of the STFT window is set to 128 and will keep the same in the rest of the experiments.

The length of the silent interval varies from 0.1 s to 1 s. When the silent interval is short

(0.1 s), a shorter ISR has a better performance. This is because there is not enough data

to compute a longer ISR. As the silent interval length increases, long ISR has a better and
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Figure 3.6: Average separation performance (output SDRs, SIRs, and SARs) as a function
of the STFT window length in the presence of RT60 = 300 ms reverberation. There are
two microphones and two speech sources. The length of ISR is 1 (K=1) for the blue and
14 (K=14) for the red.

better performance. It seems that the optimal silent length is 0.5 s, and a longer silence

interval does not bring significant benefits. The optimal length of ISR is 14. Although

a longer ISR has a larger SIR, it also has a smaller SAR, i,e, introduces more distortion.

This experiment double confirms that a longer ISR will bring more distortion.

3.4.3 Weak target extraction

This experiment evaluates the weak target signal extraction ability of ISR (Fig. 3.8). We

put the target signal at the azimuth angle of −50◦ and the interference signal at the

azimuth angle of 45◦. The silent interval is 0.5 s and will keep the same in the rest of the

experiments. The length of ISR is 14 (K=14). The input SIR is the SIR before applying

the extraction algorithm. A small input SIR means the target signal is weak. When the

input SIR is -10 dB, which means the target signal is very weak, and barely perceived, the

SIR improvement is about 20 dB in the presence of 200 ms reverberation (RT60 = 200 ms),
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Figure 3.7: Average separation performance (output SDRs, SIRs, and SARs) as a function
of the length of silent interval in the presence of RT60 = 300 ms reverberation. There
are two microphones and two speech sources. The length of ISR is 1 (K=1), 6 (K=6), 14
(K=14), and 20 (K=20) for the red, blue, yellow, and purple, respectively.

which means now the situation reverses, and the interference signal is quite suppressed.

This proves that our algorithm successfully extracts weak target signal. It should be note

that reverberation will affect the extraction performance of the algorithm.

3.4.4 Performance comparison

In this experiment, we compare the speech separation performance between we proposed

ISR and the l1 regularized cancellation kernel [3]. The length of ISR is 14 (K=14) and

the length of l1 regularized cancellation kernel is 512 (L=512). We have tried other

cancellation kernels with different length, e.g., 128, 256, 1024, and 2048. It seems that

512 is the optimal length and a longer kernel did not have a better performance but

significantly increased the computational time. As shown in Fig. 3.9, in the case of two

microphones and two speech sources, ISR and l1 regularized cancellation kernel have a

comparable separation performance, while in the case of three microphones and three

speech sources, ISR has a better SDR and SIR than l1 regularized cancellation kernel.
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Figure 3.8: Average SIR improvement with varied input SIRs in the presence of different
reverberations. There are two microphones, one target signal, and one interference signal.
The length of ISR is 14 (K=14). The reverberation time RT60 is 200 ms, 400 ms, 600 ms,
and 800 ms for the blue, red, yellow, and purple, respectively.

3.5 Summary

In the first work, we propose interference suppression response (ISR) - a time-frequency

version of the cancellation kernel. ISR can extract very weak target signals just like tra-

ditional time-domain version of the cancellation kernel. Compared to the time domain

cancellation kernel, the biggest advantage of ISR is that it has analytical expressions.

For speech separation performance, ISR has a comparable or even better separation per-

formance. About 2 dB SDR improvement in the case of three microphones and three

sources. Moreover, ISR can be computed without silent interval, which we will show it in

our second work (chapter 4). The limitation of this work is that ISR still can not avoid

distortion on the target signal. Hence, eliminating distortion is worth future research.
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Figure 3.9: Average separation performance comparison between the proposed ISR (red)
and the l1 regularized cancellation kernel [3] in the presence of different reverberations.
The length of ISR is 14 (K=14) and the length of the l1 regularized cancellation kernel
is 512 (L=512). (a) Two speech sources separation using two microphones. (b) Three
speech sources separation using three microphones.

35



Chapter 4

Improving DUET

Degenerate Unmixing Estimation Technique (DUET) [4] is one of the most well-known

blind source separation techniques based on binary masking. The algorithm is fast, robust

to noise, and quite general, i.e. can separate more than two sources. But the separation

performance of DUET is not satisfactory, which is the downside of binary masking. Binary

masking separates signals by multiplying a set of binary matrices with a mixed signal’s

spectrogram. These binary matrices are also called binary masks. Fig. 4.1 shows an

exaggerated illustration of binary masking. However, mixed speech signals can not be

Figure 4.1: An exaggerated illustration of binary masking.

completely separated by binary masking. I will illustrate this problem using Fig. 4.2.

Fig. 4.2 shows the spectrogram of two speech signals. There are three color regions shown

in the figure, which are red, green, and blue regions. The time-frequency (TF) points

in the red region are mainly contributed by source 1, the TF points in the green region

are mainly contributed by source 2, and the TF points in the blue region are contributed

by both sources. Obviously, the blue region in the spectrogram can not be separated

by binary masking. Unfortunately, the blue region is quite common for speech signals.

Hence, DUET fails to separate speech signals if there are too many sources.
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Figure 4.2: Spectrogram of two speech signals

In this work, to improve the separation performance of DUET, we replace binary mask-

ing with soft filtering, that is, a weighted summation of mixed signals. The weights are

calculated using some linear spatial filtering (also called beamforming) criteria, e.g., the

minimum variance distortionless response (MVDR) [9, 16] and our first work, interference

suppression response (ISR). Unlike previous works computing parameters of beamformer

using all the TF points, the novelty of this work is that we estimate parameters of beam-

former by only utilizing information embedded in the TF points only contributed by a

single source (single-source-points, SSPs), i.e., TF points in the red and green region in

Fig. 4.2. Compared with conventional DUET, our method improves source-to-interference

ratio (SIR) and source-distortion ratio (SDR) by 2 to 5 dB, respectively. This improve-

ment level is comparable with past literature [23]. Weights computed by ISR criteria has

obtained a much better performance than by MVDR. These results come from our speech

separation experiments using real recordings.

In the rest of the chapter, we will introduce DUET and our improved method in

section 4.1 and 4.2, respectively. Section 4.3 is the experiment protocol, and section 4.4

shows the results. This chapter is summarised in section 4.5.

4.1 Degenerate Unmixing Estimation Technique

In this section, we will introduce the degenerate unmixing estimation technique (DUET), a

fast speech separation algorithm for separating multiple sources by only two microphones.
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4.1.1 Local mixing parameters

DUET assumes that for each TF point, there is only one source active. Under this

so-called the W-Disjoint Orthogonal assumption [47, 48], mixed speech signals can be

separated by a set of binary masks that are constructed by clustering TF points. Since

speech signal from different directions has a different time of arrival and attenuation

between two microphones, TF points can be clustered based on the two features. Denote

the arrival time, attenuation, and distance from the j-th source to the i-th microphone

as tij, qij, and dij, respectively. They satisfy

tij = dij/c,

qij = 1√
4πdij

,
(4.1.1)

where c is the speed of sound, and the latter equation is obtained since the sound is radi-

ated out in the form of a sphere. Assume there are two microphones, the time difference

(δj) and the attenuation ratio (rj) between the j-th signal arriving at the two microphones

are

δj := t2j − t1j = d2j/c− d1j/c,

rj := q2j

q1j
= d1j

d2j
.

(4.1.2)

Using (4.1.2) to calculate the arrival time difference δj and the attenuation ratio rj re-

quires knowing the distance from the j-th source to the two microphones. However, this

knowledge is often not available in practice, so computations must rely on ways other than

the definition. In fact, δj and rj are encoded in the acoustic transfer functions (ATFs).

When there is no reverberation, they can be computed from ATFs (2.3.2) by

δj = −1/(2πf)∠(a2j(f)/a1j(f)),

rj = |a2j(f)/a1j(f)|,
(4.1.3)

where ∠(·) is the angle of a complex number and | · | is the module of a complex number.

Although ATF is also not available in practice, things will be different under the W-

Disjoint Orthogonal assumption. Denote the STFT coefficients of two mixed signals

observed by two microphones as x1(t, f) and x2(t, f), respectively, STFT coefficients of

the j-th source signal as sj(t, f), and the acoustic transfer function (ATF) from j-th

source to i-th microphones as aij(f). Recap the time-frequency domain multiplicative
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model (2.3.1), under the W-Disjoint Orthogonal assumption, there exists a j ∈ {1, . . . , J}

where J is the total number of sources such that

x1(t, f) = a1j(f)sj(t, f) + n1(t, f),

x2(t, f) = a2j(f)sj(t, f) + n2(t, f),
(4.1.4)

where ni(t, f) for i = 1, 2 is the noise signal on the i-th microphone. Combining (4.1.3)

and (4.1.4), assuming there is no noise on the two microphones, i.e., ni(t, f) = 0 for

i = 1, 2, we can compute the arrival time difference and the attenuation ratio from

samples of STFT coefficients of mixed signals by

δj = −1/(2πf)∠(x2(t, f)/x1(t, f)),

rj = |x2(t, f)/x1(t, f)|.
(4.1.5)

Note that, first, j here is a latent variable, i.e., we don’t know what the j is (we only

know that j ∈ {1, . . . , J}), so classification is needed. Second, in practical, δj and rj of

the same j computed from different time-frequency points are slightly different. This is

because of reverberation, noise, etc that breaks our assumptions. Hence, what (4.1.5)

computes are time-frequency dependent, called local mixing parameters, and denoted as

δ(t, f) and r(t, f). Rather than calculating rj(t, f), a better alternative is to calculate

α(t, f) := r(t, f)− 1
r(t, f)

=
∣∣∣∣∣x2(t, f)
x1(t, f)

∣∣∣∣∣−
∣∣∣∣∣x1(t, f)
x2(t, f)

∣∣∣∣∣ .
(4.1.6)

The reason is that α(t, f) is more symmetric than r(t, f): if you swap the two microphones,

r(t, f) will becomes 1/r(t, f), but α(t, f) becomes −α(t, f). α(t, f) is called the symmetric

attenuation ratio.

4.1.2 Classification by histogram

In the last section, we introduced two local mixing parameters (the arrival time difference

δ(t, f) and the symmetric attenuation ratio α(t, f)) computed from each TF point. If our

assumptions are not seriously broken, then δ(t, f) and α(t, f) of the same source will only

fluctuate within a certain range, significantly smaller than the difference between different

sources. Hence, a histogram of δ(t, f) and α(t, f) can be built up to make clusters for

TF points of different sources. We can imagine that if there are J sources from different
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directions, then there are supposed to be J peaks in the histogram, and the peak locations

reveal more accurate mixing parameters in a global view. A TF point belongs to the j-th

cluster if its position of the local mixing parameters is closer to the j-th peak location.

First, we define a set containing all the TF points whose local mixing parameters are

around given values:

I(δ, α) := {(t, f) : |δ(t, f)− δ| < 4δ, |α(t, f)− α| < 4α}, (4.1.7)

where4δ and4α are relatively small values defining the resolution. Treating all TF points

equally is not fair since for some TF points with small values are possibly noise. Hence,

rather than directly calculate a normal histogram, a weighted histogram is constructed

H(δ, α) :=
∫ ∫

(t,f)∈I(δ,α)
|x1(t, f)x2(t, f)|p(2πf)qdtdf, (4.1.8)

where p and q are parameters motivated by the maximum likelihood (ML) estimators [49].

If q = p = 0, then the weighted histogram becomes normal counting histogram. Fig. 4.3

gives an example of a weighted histogram (p=1, q=0) computed from mixtures of four

speech signals. It is recommended in [4] that by default, p=1, and q=0. If the source

signals are not equal power, then a better choice is p=0.5, q=0 to prevent the small peaks

covered by the dominant peaks.

4.1.3 Source separation

If a TF point is only or mainly contributed by a single source, the local mixing parameters,

i.e., the arrival time difference δ(t, f) and the symmetric attenuation ratio α(t, f), are

supposed to be around one of the peaks in the histogram. Then source separation is

simple by just assigning this TF point to the corresponding source. Denote the j-th peak

in the histogram as (δj, αj) (we call them global mixing parameters). We convert the

symmetric attenuation ratio back to the attenuation ratio by

rj =
αj +

√
α2
j + 4

2 (4.1.9)

We measure the distance between a local mixing parameters and global mixing parameters

via

ρj(t, f) := 1
1 + |Λj|2

|Λjx1(t, f)− x2(t, f)|2, (4.1.10)
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Figure 4.3: Top view of a weighted histogram (p=1, and q=0) of local mixing parameters
computed from mixtures of four sources.

where Λi = |ri| exp(−2πfδi), and j = 1, . . . , J . The smaller ρj(t, f) is, the closer the

local mixing parameters are to the global mixing parameters. Then the binary mask for

separating j-th source signal can be constructed by

Mj(t, f) =


1, if ρj(t, f) < ρk(t, f),∀k 6= j,

0, otherwise.
(4.1.11)

The j-th source signal can be estimated via masking

ŝj(t, f) = Mj(t, f)x1(t, f). (4.1.12)

4.2 Improved Method

The TF masking (4.1.12) can not separate mixed signal when the TF point is contributed

by more than one source. In this case, we propose to do a weighted summation to remove
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the interference contribution. The weights are calculated following some linear spatial

filtering (or beamforming) criteria, for example, the minimum distortionless response

(MVDR) and interference suppression response (ISR, our first work).

4.2.1 Spatial filtering

A linear spatial filter, also called beamformer, is a set of frequency-dependent weights

w(f) = [w1(f), . . . , wI(f)]T whose the number of coefficients is equal to the number of

microphones. The signal from the desired direction can be estimated by applying the

weights to the STFT of mixed signals x(t, f) observed by the microphone array:

ŝt(t, f) = wH(f)x(t, f), (4.2.1)

where ŝt(t, f) is the estimation of STFT of the signal from desired direction. Different

beamformers have been proposed according to different objectives. There are so-called

fixed beamformers whose weights are pre-fixed and only can be used to extract signals

from directions set in advance. The advantage of fixed beamformers is they only rely

on the direction of arrival (DOA) and the geometry of the microphone arrays while the

disadvantage is lacking of flexibility in choosing a direction and the microphone arrays.

There is another class of beamformers which are data-dependent and more flexible in

practice, called adaptive beamformers. Since these beamformers are adaptive to the

statistical characteristics of signals, they usually perform better than the fixed beam-

formers. In this thesis, we introduce two types of adaptive beamformers assuming the

time-frequency multiplicative model (see section 2.3.1). Following the equation (2.3.1),

denote ajf = [a1j(f), · · · , aIj(f)]T, STFT of signals satisfy

x(t, f) = A(f)s(t, f) + u(t, f), (4.2.2)

where x(t, f) = [x1(t, f), · · · , xI(t, f)]T are STFT coefficients of mixed signals, s(t, f) =

[sP+1(t, f), · · · , sJ(t, f)]T are STFT coefficients of the target signals, u(t, f) = ∑P
j=1 ajsj(t, f)

are contributions from the interference signals, and A = [aP+1(f), · · · , aJ(f)] are mixing

matrix containing ATFs of the target signals. We omit frame index t and frequency in-

dex f for brevity as long as there is no ambiguity. Assuming s and u are independent

random signals with zero mean, denote the covariance matrix of signals as Σx = E
[
xxH

]
,

Σs = AE
[
ssH

]
AH, and Σu = E

[
uuH

]
, respectively, they have the below relationship

Σx = Σs + Σu. (4.2.3)
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The covariance equation (4.2.3) is often used in spatial signal processing by the microphone

array. The energy of the filtered signal can be expressed as

‖wHx‖2
2 = wHΣxw

= wHΣsw + wHΣuw,
(4.2.4)

where the first term wHΣsw is the energy of the filtered target signals and the second

term wHΣuw is the energy of the filtered interference signals. A common metric called

source-to-interference ratio (SIR) is defined to measure the performance of a linearly

spatial filter:

Definition 4.1 (SIR of a Linear Spatial Filter). The source-to-interference ratio (SIR)

of a linear spatial filter is the ratio of the energy of the filtered target signals and the

interference signals, which is

SIR = wHΣsw
wHΣuw

. (4.2.5)

Minimum variance distortionless response

Assume there is only one target direction, then wHx = wHas + wHu where s is the

target signal and a is the corresponding ATF. The criterion of the MVDR is to minimize

the energy of the filtered interference signal, i.e., minw wHΣuw meanwhile introduce no

distortion on the target signal, i.e, wHa=1. Hence, MVDR filter can be obtained by

solving the following optimization problem

min
w

wHΣuw

s.t. wHa = 1.
(4.2.6)

The solution of the above problem is given by

wMVDR = Σ−1
u a

aHΣ−1
u a

. (4.2.7)

We substitute (4.2.7) into (4.2.4), the filtered signal energy by MVDR is

‖wH
MVDRx‖2

2 = σ2
s + 1

aHΣu
−1a

, (4.2.8)

where σ2
s is the variance of the target signal σ2

s = E [s2]. The SIR of the MVDR is

SIRMVDR = σ2
saHΣ−1

u a. (4.2.9)
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Under the distortionless constraint wHa = 1, minimizing wHΣuw is equivalent to mini-

mize wHΣxw = σ2
s + wHΣuw since σ2

s is a constant. Hence, the MVDR is equivalent to

the so-called minimum power distortionless response (MPDR) criterion

min
w

wHΣxw

s.t. wHa = 1.
(4.2.10)

The MPDR beamformer is

wMPDR = Σ−1
x a

aHΣ−1
x a

. (4.2.11)

The advantage of MPDR is that Σx is always available but the disadvantage is that

MPDR is more sensitive to the misalignment error of the ATF of the target signal, i.e.,

a.

Interference suppression response

Recap our first work, the multiplicative interference suppression response (ISR) (see

Sec. 3.2.1) is also a type of adaptive beamformer and can be derived from a similar

criterion of MVDR
min

w
wHΣuw

s.t. w(1) = 1,
(4.2.12)

where w(1) is the first coefficient of w. The resulting ISR beamformer

wISR = Σ−1
u a0

a0HΣ−1
u a0

, (4.2.13)

where a0 = [1, 0, · · · , 0]T ∈ RI×1. The output power of ISR is

‖wH
ISRx‖2

2 = a0
HΣ−1

u ΣsΣ−1
u a0

(a0HΣ−1
u a0)2 + 1

a0HΣ−1
u a0

. (4.2.14)

The SIR of the ISR is

SIRISR = a0
HΣ−1

u ΣsΣ−1
u a0

a0HΣ−1
u a0

. (4.2.15)

Compared to MVDR, ISR extract the target signal only assume the covariance matrix of

the interference signals. So, ISR is completely not sensitive to the misalignment error of

the ATF of the target signal. Although ISR introduce distortion on the target signal, the

effect sounds like a mild high-pass filter that the human auditory system doesn’t seem to

be sensitive to.
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Generalized ISR

ISR can be generalized by modifying the constraint in (4.2.12) to wHa0 = 1 where a0 is

an arbitrary vector with the same dimension of w. The generalized ISR (GISR) criterion

is given by
min

w
wHΣuw

s.t. wHa0 = 1.
(4.2.16)

If a0 is the ATF of the target signal, then (4.2.16) is equivalent to the MVDR crite-

rion (4.2.6), and if a0 = [1, 0, · · · , 0]T, (4.2.16) is equivalent to the ISR criterion (4.2.12).

Hence, both MVDR and ISR are special cases of GISR. The solution of (4.2.16) has the

same expression as (4.2.13). Explicit criteria should be given to determine the explicit

value of the vector a0. For example, let us consider what a0 maximizes the SIR. The SIR

of the GISR is

SIRGISR = a0
HΣ−1

u ΣsΣ−1
u a0

a0HΣ−1
u a0

. (4.2.17)

Interestingly, such a0 which maximizes the SIR (4.2.17) is exactly the ATF of the target

signal. Hence, the GISR which maximizes the SIR is exactly the MVDR. We will discuss

it below.

Definition 4.2 (Maximum Eigenvector). The maximum eigenvectors of a matrix is the

eigenvectors corresponding to the maximum eigenvalues. There may be multiple indepen-

dent maximum eigenvectors as there are multiple maximum eigenvalues.

Proposition 4.3. If a0 maximizes the SIR (4.2.17), then a0 is the maximum eigenvector

of ΣsΣ−1
u .

Proof. According to the relevant knowledge of complex analysis, a0 maximizing the

SIR (4.2.17) has to satisfy the below stationary equation:

∂

∂a0

a0
HΣ−1

u ΣsΣ−1
u a0

a0HΣ−1
u a0

= 0. (4.2.18)

Denote the maximum point by a∗0, then a∗0 should satisfy

(a∗0Σ−1
u ΣsΣ−1

u a∗0)a∗0 = (a∗0
HΣ−1

u a∗0)ΣsΣ−1
u a∗0. (4.2.19)

Denote a∗0Σ−1
u ΣsΣ−1

u a∗0 by β and a∗0HΣ−1
u a∗0 by α, the stationary equation (4.2.19) can

be simply expressed as

ΣsΣ−1
u a∗0 = β

α
a∗0. (4.2.20)
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It is not difficult to see that a∗0 is actually a eigenvector of ΣsΣ−1
u , and β

α
is the corre-

sponding eigenvalue. β
α

is exactly the SIR that we want to maximize. Therefore, a∗0 is the

maximum eigenvector of ΣsΣ−1
u . Proof is complete.

When there is only one target signal, Σs = σ2aaH where σ2 is the energy (variance)

of the target signal and a is the ATF. Since Σs is a rank-1 matrix, ΣsΣ−1
u is also rank-1

matrix and a is the only one eigenvector corresponding to the positive eigenvalue (Σu is a

positive definite matrix). Therefore, the maximum eigenvector of ΣsΣ−1
u is a, the ATF of

the target signal, and MVDR is a special case of GISR which maximizes the SIR (4.2.17).

The above discussion can be concluded in the following theorem:

Theorem 4.4 (Optimal Linearly Constrained Filter). Considering one target direction,

MVDR (4.2.7) is the filter that maximizes SIR in any linearly constrained linear spatial

filter trying to minimize the energy of interference signals.

The above discussion gives us an example to design specific filter according to a specific

criteria. Although MVDR seems to be the optimal filter, in fact, it is not robust to the

error of the ATF or covariance matrix. Perhaps a robust MVDR can be driven by the

objective of maximizing SIR while being robust. This is an interesting future work.

4.2.2 Parameters estimation

In the last section, we introduced some spatial filtering criteria. We will use these criteria

to compute weights for source separation. However, these criteria assume some param-

eters, e.g., the ATF of the target signal and the covariance matrix of the interference

signals, which are not available in the blind source separation. In this section, we will

introduce a method to estimate these parameters given mixed signals.

Recap the local mixing parameters and global mixing parameters we introduced in

Sec. 4.1.1 and Sec. 4.1.2. If our assumptions strictly hold, then the local mixing param-

eters are equivalent to the corresponding global mixing parameters. When a TF point

is contributed by two sources, the local mixing parameters will deviate from the global

mixing parameters. If the two contributions are equal, maybe the local mixing parameters

are in the middle of the global mixing parameters of the two sources. When one of the

sources is dominant, it is possible that the local mixing parameters will be closer to that
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source’s global mixing parameters. Based on this hypothesis, we identify single-source-

points (SSPs), which are dominantly contributed by a single source, by comparing the

closeness measurements for all sources {ρj(t, f),∀j} (4.1.10): Given a TF point, if the

smallest closeness is smaller than a threshold, then we regard this point as an SSP of the

corresponding source. We denote the STFT of the n-th identified SSP of the k-th source

as ĉk(n), ∀k ∈ {1, · · · , J} , and assume the j-th source is the target source, the ATF of

the target source and the covariance matrix of the interference signals can be estimated

by

âj = 1
N

N∑
n=1

ĉj(n)/ĉ1j(n),

Σ̂u = 1
N

N∑
n=1

(
∑
k 6=j

ĉj(n))(
∑
k 6=j

ĉj(n))H,

(4.2.21)

where N is the total number of SSPs of each source, and note that, instead of estimating

the ATF, we actually estimate the relative transfer function (RTF) (2.3.3), a normalized

ATF, to prevent the scale ambiguity (see Sec. 2.3.1 for more detail). Now we can calculate

the weights for separating the j-th source according to the spatial filtering criteria that

we introduced in the last section.

4.2.3 Source separation

Instead of binary masking (4.1.11), we propose a weighted summation whose weights are

calculated according to the spatial filtering criteria, e.g., the criteria of MVDR (4.2.6)

and ISR (4.2.12). Denote the computed weights for separating the j-th source as wj(f),

the source separation is given by

ŝj(t, f) =


wH
j (f)x(t, f), if ρj(t, f) < ρk(t, f),∀k 6= j,

0, otherwise.
(4.2.22)

The improved DUET is detailed in Algorithm 1. In this paper, we focus on the two-

microphone case, the minimum required number of microphones. In fact, more micro-

phones can be used to calculate more weights, so the separation effect will be better.
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Algorithm 1: Improved DUET by soft-filtering [50]
Input: two channels of the mixed signals, the number of sources J , a closeness

threshold µ
Output: J separated source signals

1 Implement STFT on the mixed signals;
2 Calculate the local mixing parameters, the arrival time difference δ(t, f) (4.1.5)

and the symmetric attenuation ratio α(t, f) (4.1.6), for each TF point;
3 Build up the histogram described in Sec. 4.1.2;
4 Find J peaks on the histogram and calculate the closeness between the local

mixing parameters of each TF point and each peak by (4.1.10). Denote the
closeness ρj(t, f), j = 1, . . . , J ;

5 ∀j ∈ {1, . . . , J}, label the TF point the j-th source’s SSP if ∀k 6= j,
ρj(t, f) < ρk(t, f) and ρj(t, f) < µ;

6 for j = 1; j ≤ J ; j = j + 1 do
7 Estimate the ATF of the j-th source and the covariance matrices of the

interference signals by (4.2.21);
8 Calculate the weights by (4.2.11) or (4.2.13);
9 Separate mixed signals via (4.2.22)

10 end
11 Return the separated source signals in the time domain by implementing the

inverse STFT.

4.3 Experiment

We use the standard audio source separation metrics: source-to-distortion ratio (SDR),

source-to-interference ratio (SIR), and source-to-artifact ratio (SAR) (which we have

introduced in Sec. 3.3) to evaluate the performance of the proposed algorithm. The

mixed signals are real recordings using two microphones. The recordings are from the

SiSEC2011 [44] competition and recorded in a conference room with 130 ms or 250 ms

reverberation. The conference room has a dimension of 4.45 m × 3.55 m × 2.5 m. The

four speakers are located 1 m from the two microphones, and the two microphones are

separated by 5 cm. The azimuth angles of the speakers are −50◦, −10◦, 15◦, and 45◦. All

recordings have a duration of 10-second.

We have tested our algorithm by separating two mixed signals of two, three, and four

sources. The benchmark methods include DUET [4], the independent vector analysis

(IVA) [5], the independent low rank matrix analysis (ILRMA) [6], the multi-channel

non-negative matrix factorization (MULTINMF) [7], and the full-rank covariance model

(FULLRANK) [8]. The parameter settings of the above algorithms refer to their original

literature. For each algorithm, we tested many STFT windows of different lengths and
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finally chose the window length that gave the largest SDR. Our final choice was a 3/4

overlapping Hann window of 1024 points long (64 ms) for the proposed method, DUET

and IVA. The semi-overlapping 4096-point length (256 ms) Hann window is used for

ILRMA, and the literature [13, 16] also obtained the same optimal window length for

ILRMA as ours. A 3/4 overlapping 2048 point long (128 ms) Hann window was applied

to MULTINMF and ILRMA. Other window functions and overlap ratios with different

window lengths do not bear higher SDR values. The threshold for identifying SSPs was set

to 0.05. The number of bases of ILRMA was 2 which is appropriate for speech signals [6].

The number of components per source in MULTINMF was 10 as recommended in [7].

4.4 Experiment Result

4.4.1 Separation performance

2 mixtures of 2 sources

Average performance was obtained by separating 24 pairs of dual-channel mixed signals

of two speech sources in the presence of 130ms and 250ms reverberation. Six different

directions of arrival (DOA) combinations (two out of four azimuth angles) and four dif-

ferent gender combinations (male or female for each source) produced these 24 pairs of

mixed signals. We compared our algorithm (weights were calculated according to ISR cri-

terion) with DUET [4], IVA [5], and ILRMA [6]. As we can see in Fig. 4.4, the proposed

method performs much better than the benchmark algorithms in terms of SDR, SIR, and

SAR. The better performance than DUET implies that the weighted summation success-

fully removes the interference component in TF points where both the target source and

the interference sources contribute. Both IVA and ILRMA are independent component

analysis (ICA) based algorithms. ICA assumes that source signals are independent to

each other, hence, ICA separates signals by maximizing some metrics measuring signals’

independence, e.g., kurtosis and mutual information [51]. Although maximizing signals’

independence has a certain separation effect, it is not as good as our method. This may

be because independence is not a key property of separating speech signals, but a sparse

property we mentioned earlier, that is, a partially disjoint relationship in the spectrogram.
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Figure 4.4: Average BSS performance comparison (output SDRs, SIRs, and SARs) for
two mixtures of two sources in the presence of 130 ms and 250 ms reverberation time.
The red, yellow, purple, and green are our proposed algorithm, DUET [4], IVA [5], and
ILRMA [6], respectively.

2 mixtures of 3 sources

Average performance was obtained by separating 32 pairs of dual-channel mixed signals

of three speech sources in the presence of 130ms and 250ms reverberation. Four different

DOA combinations (three out of four azimuth angles) and eight different gender combi-

nations (male or female for each source) resulted in these 32 pairs of mixed signals. We

compared our proposed algorithms with DUET, MULTINMF [7], and FULLRANK [8].

We did not compare with IVA and ILRMA because they require the number of sources

are equal to the number of microphones. The result is shown in the Fig. 4.5. MULTINMF

and FULLRANK are generative models that assume the signal follows a Gaussian distri-

bution. But speech signals are not Gaussian signals, they are more like random signals

that follow a Laplacian distribution. If a Laplacian distribution is assumed, the recon-

structed signals will be more sparse. Maybe MULTINMF and FULLRANK will have a

better performance.

50



Figure 4.5: Average BSS performance comparison (output SDRs, SIRs, and SARs) for two
mixtures of three sources in the presence of 130 ms and 250 ms reverberation time. The
red, yellow, purple, and green are our proposed algorithm, DUET [4], MULTINMF [7],
and FULLRANK [8], respectively.

2 mixtures of 4 sources

There are 16 pairs of dual-channel mixed signals of four speech sources to evaluate the

average separation performance. The result is shown in Fig. 4.6.

Comparison between ISR and MVDR

We also compared the separation performance of different weights according to different

spatial filtering criteria. Fig. 4.7 shows the comparison between ISR (red) and MVDR

(blue). Clearly, ISR performs much better than MVDR in terms of SDR, SIR, and SAR.

This implies that the destruction by the misalignment error of ATF for MVDR is more

serious than the innate distortion for the ISR. According to our perceptual evaluation,

MVDR introduces more low frequency noise coming from the interference signals. This

may be caused by the fact that the estimated target source direction is deviated towards

the direction of the interference sources due to the estimation error. ISR, on the other

hand, moves the energy towards the high frequencies, thus the separated signals sound
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Figure 4.6: Average BSS performance comparison (output SDRs, SIRs, and SARs) for two
mixtures of four sources in the presence of 130 ms and 250 ms reverberation time. The
red, yellow, purple, and green are our proposed algorithm, DUET [4], MULTINMF [7],
and FULLRANK [8], respectively.

like being processed by some high pass filter.

Comparison between different thresholds

The threshold µ determines whether an SSP is strictly or not strictly selected. A smaller

threshold means that a TF point should be recognized as an SSP point when its local

mixing parameters are close enough to the global mixing parameters. If the threshold is

infinity, then a TF point is identified as an SSP of the j-th source as long as its local

mixing parameters are closer to the global mixing parameters corresponding to the j-th

source. At this time, the TF point may not be contributed by a single source, but by

multiple sources. Fig 4.8 shows a comparison between mu = 0.05 and µ =∞. When the

number of sources is two or three, the results indicate that there seems not necessary to

have a strict SSP detection. However, the number of sources is four, a strict SSP detection

will lead to a better separation performance. This is because when the number of sources

is larger, more TF points will be occupied by multiple sources, which will reduce the
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Figure 4.7: Average BSS performance comparison (output SDRs, SIRs, and SARs) be-
tween the soft filtering with the proposed ISR (red) and with the well-known MVDR [9]
(blue) in the presence of 130 ms and 250 ms reverberation time.

Figure 4.8: Average BSS performance comparison between a small µ (µ = 0.05, strict
selection of SSP) and a large µ (µ = ∞, no selection of SSP) in the presence of 130 ms
and 250 ms reverberations.

accuracy of parameter estimation. Therefore, strict SSP detection is needed when the

number of sources increases.

4.4.2 Time consumption

Table 4.1 records the time consumption for each algorithm we performed above to separate

one pair of mixed signals. Our proposed algorithm not only possesses the best perfor-

mance, but also is computationally cheap, and can complete the separation of a 10-second

length of speech signal within one second, far less than MULTINMF and FULLRANK.

Although it is not fair to compare with the DUET as it almost failed in the separation of

four sources, we still give the time of its separation for completeness.
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2 sources 3 sources 4 sources
DUET-MVDR 0.74 s 0.84 s 0.96 s

DUET-ISR 0.73 s 1.00 s 1.01 s
DUET [4] 0.1 s 0.14 s 0.18 s

IVA [5] 3.40 s \ \
ILRMA [6] 8.39 s \ \

MULTINMF [7] \ 32.85 s 43.54 s
FULLRANK [8] \ 575.32 s 585.39 s

Table 4.1: Time consumption of different algorithms for one pair of mixtures.

4.5 Summary

In this work, we modified the DUET algorithm and propose a computationally efficient

and cost-effective algorithm for blind speech separation. The key idea is to exploit the

partially-disjoint nature of speech in the spectrogram to compute weights according to

spatial filtering criteria and do weighted summation instead of binary masking to separate

signals. The proposed algorithm achieves more than 5 dB SIR improvement and 4 dB

SDR improvement than DUET. It also outperforms the second best-performed algorithm,

MULTINMF (2 to 3 dB SDR improvement), but only takes 1/40th of the time to compute

in the task of separating four speech sources with two microphones. Improvement for

the proposed algorithm can be achieved by applying more sophisticated single-source-

point detection (or partially disjoint region detection), spatial filtering criteria, and more

microphones.
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Chapter 5

Improving l1 Minimization

In many real applications of interest, we want to reconstruct an object s0 ∈ FJ×1 from

data x ∈ FI×1, where F is either the real numbers R or complex numbers C. The

object and the data often satisfy a linear relationship, i.e., x = As0, and commonly

there are fewer observations, i.e., I < J . Matrix A is called mixing matrix in signal

separation or sensing matrix in compressed sensing. Given A, solving the linear equations

is an ill-posed problem since many candidates exist. It is well-known now, that if the

object we wish to recover is sparse, that is, it only depends on a smaller number of

parameters, exact recovery may be obtained by searching for the feasible solution with

the minimal l1 norm [52, 53]. It is also established [52, 54] that when A is chosen from a

suitable distribution, with a high probability, s0 can be perfectly recovered if the number

of non-zero entries is smaller than I/α with α = O(log J
I
). Moreover, even s0 is only

approximately sparse and the observed data has noise, the feasible solution with the

minimal l1 norm is still reasonably close to s0. Due to the stable recovery ability from

significantly fewer observations, l1 minimization has drawn a tremendous interest in the

field of compressed sensing. Its application involves medical imaging, data compression,

seismology, astronomy, sensor network, and so on.

l1 minimization has also been widely used to solve speech separation [22, 55–57]. Com-

pared with the famous independent component analysis (ICA) based speech separation

algorithms, speech separation by l1 minimization can handle situations where the num-

ber of sources is greater than the number of microphones. Since speech signals are not

sparse in the time domain, in the context of speech separation, recall the linear model

x = As0, x and s0 are some appropriate representations of the mixed and source signals,

respectively. Perhaps the most common representation for a speech signal is its coeffi-

cients of the Short-time Fourier transform (STFT). A speech separation algorithm based
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on l1 minimization is usually split into two successive steps. The first step is to estimate

the mixing matrix A. There are many articles addressing this problem, e.g., [24, 25, 58].

The second step is to estimate the source signal by l1 minimization given the mixing

matrix [20, 21]. The focus of this work is on the second step. Note that, because the

problem is underdetermined, that is, there are more sources than the microphones, hence,

even given the mixing matrix, the second step is not a trivial problem. Both steps can

also be alternatively repeated in the iteration [22].

Although a lot of works demonstrate the validity of l1 minimization in speech sepa-

ration, is there a better alternative than pursuing the minimal l1 norm? Arberet, Van-

dergheynst, and the rest [21] tried to use a weighted l1 minimization where the weights

are chosen according to a reweighted scheme [59], and the results show a superiority over

the plain l1 minimization, but it is not a fair comparison because the computational time

of the reweighted l1 minimization is several times that of the plain l1 minimization.

In this work, we propose a better alternative than the l1 minimization for speech sep-

aration, a novel weighted l1 minimization called adaptive weighted l1 minimization. We

observe that, with proper normalization, the STFT coefficients of mixed signals are not

arbitrarily distributed, but clustered together. This gives us an opportunity to roughly

estimate the source signal and calculate the weights based on that. The weights can

be easily computed, a definite advantage over the weights computed via the reweighed

scheme. The weighted l1 minimization can be solved by the same solver of the l1 min-

imization, so no extra effort is required. The result shows a much better (up to 5 dB

SDR) separation performance than that of the plain l1 minimization. Further improve-

ment can be obtained by utilizing the reweighted scheme. The improvement is robust to

the estimation error of the mixing matrix, which is proved by manually adding Gaussian

noise to the mixing matrix and real estimation error. Although the adaptive weighted

l1 minimization and l1 minimization can be solved using the same convex optimization

solver, in practice, the solution of adaptive weighted l1 minimization converges faster and

can save up to 35% of the time. Let’s dive into more details in the following sections.
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5.1 l1 Minimization

Is it possible to reconstruct a signal when the measurement is incomplete? The Nyquist

sampling theorem tells us it is possible when the sampling frequency is at least twice

larger than the signal’s frequency. A further question is: can the signal be compressed

more? The answer is still yes under certain conditions. Milestone works have been done

by Donoho [60], Candes and the rest [61]. The key condition is that the signal (or its

representation) has to be sparse. This is intuitive because if the signal is sparse, there is

natural room to compress the signal. The truly surprising is that the restoration can be

done by a simple convex optimization, that is, to minimize the l1 norm of the reconstructed

signal:
min

s
‖s‖1

s.t. x = As,
(5.1.1)

where s ∈ FJ×1 is the reconstructed signal, x ∈ FI×1 is the observed data, and A ∈ FI×J is

a matrix with less rows than columns, i.e., I < J (hence, the measurement is incomplete),

and ‖s‖1 is the one-norm of s: ‖s‖1 := ∑J
j=1 |sj|. F is either the real numbers R or

complex numbers C.

5.1.1 Recovery condition

In this section, we discuss the exact recovery condition of l1 minimization, i.e., in what

condition the optimal solution of the l1 minimization (5.1.1) is equal to s0. The discussion

is on the real number domain, i.e., F = R and partially refers to the book [62] but all the

proofs are independently given by us. We first give a weak recovery condition based on

mutual coherence for qualitative description, then give a strong recovery condition based

on the restricted isometry property (RIP). The strong condition means we have a larger

recovery range compared to the weak condition.

Recovery under incoherence

l1 minimization (5.1.1) is a convex relaxation of l0 minimization. Hence, we begin with

the exact recovery condition of l0 minimization, then the condition of l1 minimization. l0
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minimization aims to find the sparsest solution satisfying the linear equations:

min
s
‖s‖0

s.t. x = As,
(5.1.2)

where ‖s‖0 is the zero-norm of s: the number of non-zero entries in s. Since l0 minimiza-

tion pursues the sparsest solution, it is not surprising that the optimal solution ”hits”

the original solution if the original solution is also sparse. The formal definition of the

sparseness of a vector is:

Definition 5.1 (k-sparse). A vector s is k-sparse means at most k entries of s are non-

zero, i.e., ‖s‖0 ≤ k.

The recovery condition of l0 minimization (5.1.2) consists of two parts:

• The original solution s0 is sparse, i.e., ‖s0‖0 is small.

• The matrix A has a nice structure: the column vectors of A are as linearly inde-

pendent as possible.

If A has a nicer structure, then s0 can be less sparse, and vice versa. The mathematical

way to define the structure of A is the Kruska rank [63]:

Definition 5.2 (Kruskal Rank). The Kruskal rank of a matrix A, denoted by krank(A),

is the maximum number r such that any r column vectors of A are linearly independent.

If a matrix has a large Kruskal rank, its vectors in the null space are dense, which is

the key for exact recovery by l0 minimization.

Theorem 5.3 (l0 Recovery). Suppose x = As0, if ‖s0‖0 <
1
2(krank(A) + 1), then s0 is

the unique optimal solution of the l0 minimization:

min
s
‖s‖0

s.t. x = As.
(5.1.3)

Proof. Suppose we have s′ such that x = As′, then A(s′−s0) = 0, i.e., (s′−s0) ∈ null(A).

According to the triangular inequality of l0 norm, we have ‖s′‖0 + ‖s0‖0 ≥ ‖s′ − s0‖0.

Note that ‖s′− s0‖0 ≥ krank(A) + 1, thus ‖s′‖0 +‖s0‖0 ≥ krank(A) + 1. If 1
2(krank(A) +

1) > ‖s0‖0, then we have ‖s′‖0 ≥ krank(A) + 1 − ‖s0‖0 >
1
2(krank(A) + 1). Proof is

complete.
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If entries of A ∈ RI×J (assume I ≤ J) are from i.i.d. distribution with a probability

density function (pdf), then with probability 1, it is a full rank matrix and krank(A) = I.

This means if s0 has at most I/2 non-zero entries, it can be exactly recovered by l0

minimization almost surely. In other words, for a k-sparse vector s0, generally speaking,

only 2k linear measurements are sufficient to keep all the information. However, solving

the l0 minimization is NP-hard. This means when the dimension is large, finding the

optimal solution is computationally intractable. Thus, people propose an alternative

which can be computed more efficiently - the l1 minimization, a convex relaxation of the

l0 minimization.

For the exact recovery of the l1 minimization, compared to the l0 minimization, we

need a nicer structure. For the l0 minimization, we require the column vectors of A to

be as independent as possible, now, we require the column vectors are as dispersed as

possible, or as orthogonal as possible. Mutual coherence is defined as a measure of the

dispersion of column vectors in a matrix.

Definition 5.4 (Mutual Coherence). The mutual coherence of a matrix A = [a1| · · · |aJ ] ∈

RI×J without zero column vector, written as µ(A), is the maximum absolute value of the

inner product of any two normalized column vectors in A:

µ(A) := max
i 6=j

∣∣∣∣∣< ai
‖ai‖2

,
aj
‖aj‖2

>

∣∣∣∣∣ . (5.1.4)

If each column vector in A is orthogonal to each other, then µ(A) = 0. However, this

will not happen when I < J , and µ(A) will increase as J increases. The relationship

between the Kruskal rank and the mutual coherence is given by the theorem:

Theorem 5.5 (Mutual Coherence and Kruskal Rank). Given a matrix A ∈ RI×J , its

mutual coherence (µ(A)) and Kruskal rank (krank(A)) satisfy:

1
µ(A) ≤ krank(A). (5.1.5)

Proof. Without losing any generality, suppose each column vector of A has a unit l2 norm

(The normalization will not change krank(A)) nor µ(A)). Suppose Ak is a submatrix

consisting of any k column vectors of A, B = AT
kAk, and bij is the entry in the i-th row

and the j-th column of B. Note that the diagonal entries of B is 1, according to the

Gershgorin circle theorem, we have

1 + max
j

∑
i 6=j
|bij| ≥ σmax(AT

kAk) ≥ σmin(AT
kAk) ≥ 1−max

j

∑
i 6=j
|bij|. (5.1.6)
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According to the definition of the mutual coherence, we have bij ≤ µ(A), ∀i, j and i 6= j.

Hence, we have

1 + (k − 1)µ(A) ≥ σmax(AT
kAk) ≥ σmin(AT

kAk) ≥ 1− (k − 1)µ(A). (5.1.7)

If k = krank(A) + 1, then there must be a submatrix Ak which is not a full column rank

matrix. Since (5.1.7) holds for any submatrix, we have

0 ≥ 1− krank(A)µ(A). (5.1.8)

The proof is completed.

Since computing a Kruskal rank of a matrix is an NP-hard problem, the Theorem 5.5

provides an computationally tractable way to check whether the l0 minimization can

exactly recover the original solution, that is, if ‖s0‖ < 1
2(µ−1(A) + 1), then s0 is the

unique minimizer of the l0 minimization. Intriguingly, such s0 is also the unique optimal

solution of the l1 minimization if A has unit l2 norm columns:

Theorem 5.6 (l1 Recovery under Incoherence [64, 65]). Suppose x = As0, if ‖s0‖0 <

1
2(µ−1(A) + 1) and each column of A has unit l2 norm, then s0 is the unique optimal

solution of the l1 minimization:
min

s
‖s‖1

s.t. x = As.
(5.1.9)

Proof. Suppose s′ is an optimal solution of the l1 minimization and s′ 6= s0 for the sake of

the contradiction. Let S be the support of s0 and denote the rest entries’ location by Sc.

For any vector y, define yS such that the i-th entry of yS equals to the i-th entry of y if

i ∈ S, otherwise 0. The whole proof can be split into two steps, and the final result can

be obtained from the contradiction produced by combining the two sub-results. Denote

e = s′−s0. First we shall prove that ‖e‖1 ≤ 2‖eS‖1. According to our assumption, we have

‖s′S + s′Sc‖1 ≤ ‖s0‖1 ⇒ ‖s′S‖1 + ‖s′Sc‖1 ≤ ‖s0‖1 ⇒ ‖s0‖1 − ‖s′S‖1 ≥ ‖s′Sc‖1. According

to the triangular inequality, we have ‖s′S − s0‖1 ≥ ‖s′Sc‖1. Note that eS = s′S − s0 and

‖eSc‖1 = ‖e‖1 − ‖eS‖1. Hence, we have

‖e‖1 ≤ 2‖eS‖1. (5.1.10)

The second step is to prove that |ei| ≤ µ(A)
1+µ(A)‖e‖1, ∀i (ei is the i-th entry of e). Suppose

B = ATA and bij is the entry in the i-th row and j-th column of B. Since Ae = 0,
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we have Be = 0. This means ∀i, we have ei + ∑
j, j 6=i bijej = 0 ⇒ |ej| = |∑j, j 6=i bijej| ≤∑

j, j 6=i |bij||ej|. Note that µ(A) = maxi, j, i6=j |bij|. Thus, we have |ei| ≤ µ(A)∑j, j 6=i |ej| =

µ(A)(‖e‖1 − |ei|). It is equivalent to say that

|ei| ≤
µ(A)

1 + µ(A)‖e‖1, ∀i. (5.1.11)

If we do a summation of |ei| over the support S, according to (5.1.11), we have ‖eS‖1 ≤
µ(A)

1+µ(A)‖e‖1|S|, where |S| is the number of elements in S. Combining this inequality

with (5.1.10), we have

‖eS‖1 ≤
µ(A)

1 + µ(A)‖e‖1|S|

≤ 2µ(A)
1 + µ(A)‖eS‖1|S|.

(5.1.12)

From (5.1.12), we can easily have the inequality ‖s0‖ = |S| ≥ 1
2(1 + µ−1(A)), a contra-

diction to our condition in the theorem. Thus, there is no optimal solution s′ such that

‖s′‖1 ≤ ‖s0‖1 and s′ 6= s0. The proof is completed.

Theorem 5.6 tells us the recovery ability of l1 minimization depends on the incoherence

of the matrix A: a smaller µ(A) allows exact recovery for a denser s0. Here we give lower

and upper bounds on the incoherence of a generic matrix A.

Theorem 5.7 (Mutual Coherence Lower Bound [66]). For any matrix A ∈ RI×J with

I ≤ J , the lower bound of the mutual coherence of A is given by:

µ(A) ≥
√

J − I
I(J − 1) . (5.1.13)

Proof. Define B := ATA ∈ RJ×J , tr(B) as the trace of B, and λi(B) as the i-th eigenvalue

of B. Suppose the rank of A is r (r ≤ I), so we have r non-zero eigenvalues for B, denoted

as λ1(B), · · · , λr(B). According to the Cauchy–Schwarz inequality, we have tr2(B) =

(∑r
i=1 λ

2
i (B))2 ≤ r

∑r
i=1 λ

2
i (B) ≤ I

∑r
i=1 λ(B). Hence we have

r∑
i=1

λ2
i (B) ≥ tr2(B)

I
= J2/I. (5.1.14)

About the Frobenius norm of B, we have ‖B‖F := ∑
i,j b

2
ij = J + ∑

i 6=j b
2
ij ≤ J + J(J −

1)µ2(A). A fact about the Frobenius norm is that ‖B‖2
F ≥

∑r
i=1 λ

2
i (B), which can be

proved by the Schur decomposition. Thus we have

J + J(J − 1)µ2(A) ≥
r∑
i=1

λ2
i (B). (5.1.15)
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Combining (5.1.14) and (5.1.15), we can easily have the lower bound of µ(A). The proof

is completed.

Theorem 5.8 (Mutual Coherence Upper Bound). For any matrix A = [a1|a2| . . . |aJ ] ∈

RI×J with column aj ∼ uni(SI−1) is independently chosen from a uniform distribution

on the sphere. Then with a high probability (can be arbitrarily close to 1), µ(A) ≤

O(
√

log(2J)
I

).

Proof. See [62].

According to the Theorem 5.8 (the upper bound theorem), if A is chosen from a

suitable distribution and ‖s0‖0 ≤ O(
√

I
log(2J)), then with a high probability, the success of

the Theorem 5.6 is guarantied. According to the Theorem 5.7 (the lower bound theorem),

if I is proportional to the J and I is large, then the success of the Theorem 5.6 requires

at least the guarantee that ‖s0‖0 ≤ O(
√
I). In fact, there are lots of successful examples

of l1 minimization when ‖s0‖0 is proportional to the I. This indicates that the mutual

coherence is too rough to represent the ”nice” structure of A. We need a more sharpened

theorem for the recovery of l1 minimization.

Recovery under RIP

In the last section, we discussed how the recovery ability of the l1 minimization is suffi-

ciently determined by the mutual coherence. The fact that many examples not guaranteed

by mutual coherence are successful cases indicates that mutual coherence is a ”rough” de-

scription of the nice structure of A. Intuitively, finding a better fine description can

be benefited from below observation, that is, the inequality (5.1.7) we derived from the

Theorem 5.5, which we restated below:

1 + (k − 1)µ(A) ≥ σmax(AT
kAk) ≥ σmin(AT

kAk) ≥ 1− (k − 1)µ(A), (5.1.16)

where Ak is any submatrix of A consisting of k columns. Note that σ(AT
kAk) = σ2(Ak).

Since a ”nice” A for l1 minimization is implied by a small µ(A), whether it also can be

implied by that the singular values of Ak concentrates around 1? Or equivalently1 to say

for any k-sparse vector s, there exists a small number δ such that

(1− δ)‖s‖2
2 ≤ ‖As‖2

2 ≤ (1 + δ)‖s‖2
2. (5.1.17)

1The equivalence can be easily seen by keeping in mind that for any k sparse vector s, As = Aks
where Ak is the submatrix of A consisting of the corresponding k columns.
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The answer is positive! And what beyond the mutual coherence is that for a ”generic”

matrix, its δ is small enough if I, J , and k are proportional. We give a formal definition

of δ:

Definition 5.9 (Order-k Restricted Isometry Constant). δk is an order-k restricted isom-

etry constant of a matrix A ∈ RI×J (k ≤ J) if it is the smallest number such that

(1− δk)‖s‖2
2 ≤ ‖As‖2

2 ≤ (1 + δk)‖s‖2
2 (5.1.18)

holds for any k-sparse vector s.

If A has a small δk, it means the mapping s → As nearly preserves the amplitude

with the restriction that s is a k-sparse vector. We call this property of A the restricted

isometry property:

Definition 5.10 (Order-k Restricted Isometry Property [67]). A matrix A satisfies the

restricted isometry property of order k if its order-k restricted isometry constant δk ∈

[0, 1).

The success of l0 or l1 minimization is guaranteed as long as A has a small restricted

isometry constant.

Theorem 5.11 (l0 Recovery under RIP). Suppose x = As0, if k=‖s0‖0 and δ2k < 1,

then s0 is the unique optimal solution of the l0 minimization:

min
s
‖s‖0

s.t. x = As.
(5.1.19)

Proof. If δ2k < 1, then the null space of A does not have a 2k-sparse vector according to the

definition. This means for any feasible solution s′ satisfying ‖s′‖0+‖s0‖ ≥ ‖s′−s0‖0 > 2k.

Hence ‖s′‖0 > k.

Theorem 5.12 (l1 Recovery under RIP). Suppose x = As0, if k=‖s0‖0 and δ2k <
√

2−1,

then s0 is the unique optimal solution of the l1 minimization:

min
s
‖s‖1

s.t. x = As.
(5.1.20)
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Theorem 5.12 is given without a proof as we will give a more general theorem consid-

ering the noisy recovery when s0 is any vector. Considering there is an unknown noise

on the observation, i.e., x = As0 + n with ‖n‖2 ≤ ε, one may search a feasible solution

satisfying ‖x−As‖ ≤ ε. Then what can we have from the following convex optimization

problem
min

s
‖s‖1

s.t. ‖x−As‖ ≤ ε.
(5.1.21)

Moreover, what if s0 is not a sparse but a general vector? Amazingly, the difference

between s?, the minimizer of (5.1.21), and s0 can be bounded by the ε and the difference

between s0 and its best k-sparse approximation s0,k which is the vector s0 with all but

the k-largest entries set to zero.

Theorem 5.13 (Noisy l1 Recovery [52, 53]). Suppose x = As0 + n, δ2k <
√

2 − 1, and

‖n‖2 ≤ ε, then ‖s? − s0‖2 ≤ C0k
−1/2‖s0 − s0,k‖2 + C1ε, where C0 > 0 and C1 > 0 are

some constants, s0,k is the best k-sparse approximation of s0, and s? is the solution to

min
s
‖s‖1

s.t. ‖x−As‖ ≤ ε.
(5.1.22)

Proof. Suppose s?−s0 = h. Denote the support of s0,k as T0. Decompose h into hT0 , hT1 ,

hT2 , · · · , each of sparsity at most k. T1 corresponds to the position of the k largest absolute

coefficients of hTC0 , T2 corresponds to the position of the k largest absolute coefficients of

h(T0∪T1)C , and so on. The following calculation rules are often used in the proof: for any

two disjoint sets T, T ′ ⊆ {1, 2, · · · , N}, sT + sT ′ = sT∪T ′ and ‖sT‖1 + ‖sT ′‖1 = ‖sT∪T ′‖1.

There are four useful facts

1. For j ≥ 2, ‖hTj‖2 ≤
√
k‖hTj‖∞ ≤ k−

1
2‖hTj−1‖1. This is a simple application of the

norm inequality.

2. ‖s0 + h‖1 ≤ ‖s0‖1 ⇒ ‖hTC0 ‖1 ≤ 2‖s0TC0
‖1 + ‖hT0‖1. This can be obtained from

‖s0 + h‖1 = ‖s0T0 + s0TC0
+ hT0 + hTC0 ‖1 ≥ ‖s0T0 + hTC0 ‖1 − ‖s0TC0

+ hT0‖1 =

‖s0T0‖1 + ‖hTC0 ‖1 − ‖s0TC0
‖1 − ‖hT0‖1.

3. ‖hT0‖1 ≤
√
k‖hT0‖2. This is a simple application of the Cauchy-Schwarz inequality.

4. Lemma: for any s, s′ supported on disjoint sets T, T ′ ⊆ {1, 2, · · · , n} with |T | ≤

k, |T ′| ≤ k′, then | 〈As,As′〉 | ≤ δk+k′‖s‖2‖s′‖2. This is an application of the Paral-

lelogram identity. | 〈As,As′〉 | = 1
4(‖As + As′‖2

2−‖As−As′‖2
2) ≤ 1

4((1 + δk+k′)‖s +
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s′‖2
2 − (1 + δk+k′)‖s − s′‖2

2)). Note that ‖s + s′‖2
2 = ‖s − s′‖2

2 = ‖s‖2
2 + ‖s′‖2

2 since

s and s′ are disjoint. Then we have | 〈As,As′〉 | ≤ 1
2δk+k′(‖s‖2

2 + ‖s′‖2
2). The upper

bound can be tighter by replacing s, s′ with s
‖s‖2

, s′
‖s′‖2

. Then we have the lemma.

Now we are ready to start the proof of the theorem. The whole proof can be split into

two steps. First, we shall prove that ‖h(T0∪T1)C‖2 is bounded by ‖hT0∪T1‖2, then we prove

that ‖hT0∪T1‖2 is small.

For the first step, according to the fact 1, we have

‖h(T0∪T1)C‖2 = ‖
∑
j≥2

hTj‖2 ≤
∑
j≥2
‖hTj‖2 ≤

√
k
∑
j≥2
‖hTj‖∞ ≤ k−

1
2‖hTC0 ‖1. (5.1.23)

This can be further bounded according to the fact 2 and the fact 3:

‖h(T0∪T1)C‖2 ≤ k−
1
2‖hT0‖1 + 2ek

≤ ‖hT0‖2 + 2ek

≤ ‖hT0∪T1‖2 + 2ek,

(5.1.24)

where ek := k−
1
2‖s0 − s0T0‖1.

For the second step, according to the definition of restricted isometry property, we

have

(1− δ2k)‖hT0∪T1‖2
2 ≤ ‖AhT0∪T1‖2

2

= 〈AhT0∪T1 ,Ah〉 −
〈
AhT0∪T1 ,Ah(T0∪T1)C

〉
≤ | 〈AhT0∪T1 ,Ah〉 |+ |

〈
AhT0∪T1 ,Ah(T0∪T1)C

〉
|.

(5.1.25)

Then we try to bounded the two inner products. For the first inner product, since

‖Ah‖2 = ‖As? −As0‖2 ≤ ‖As? − x‖2 + ‖x−As0‖2 ≤ 2ε, we have

| 〈AhT0∪T1 ,Ah〉 | ≤ ‖AhT0∪T1‖2‖Ah‖2

≤ 2ε
√

1 + δ2k‖hT0∪T1‖2.
(5.1.26)

For the second inner product, according to the fact 4, we have

|
〈
AhT0∪T1 ,Ah(T0∪T1)C

〉
| = |

〈
A(hT0 + hT1),A

∑
j≥2

hTj

〉
|

≤
∑
j≥2
|
〈
AhT0 ,AhTj

〉
|+

∑
j≥2
|
〈
AhT1 ,AhTj

〉
|

≤ (‖hT0‖2 + ‖hT1‖2)δ2k
∑
j≥2
‖hTj‖2.

(5.1.27)
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Since ‖hT0‖2 + ‖hT1‖2 ≤
√

2‖hT0∪T1‖2 for T0 and T1 are disjoint, we have

|
〈
AhT0∪T1 ,Ah(T0∪T1)C

〉
| ≤
√

2δ2k‖hT0∪T1‖2
∑
j≥2
‖hTj‖2. (5.1.28)

It follows from (5.1.25), (5.1.26), (5.1.28), and δ2k <
√

2− 1, we have

‖hT0∪T1‖2 ≤ αek + ρε, (5.1.29)

where ek = k−
1
2‖s0 − s0T0‖1, α = 2

√
2δ2k

1−(
√

2+1)δ2k
, and ρ = 2

√
1+δ2k

1−(
√

2+1)δ2k
.

Now we can conclude this proof from (5.1.24) and (5.1.29) that

‖h‖2 ≤ ‖hT0∪T1‖2 + ‖h(T0∪T1)C‖2

≤ C0ek + C1ε.
(5.1.30)

where C0 = 2(α + 1) and C1 = 2ρ.

Theorem 5.12 is a special case of Theorem 5.13 when ε = 0 and s0 is a k-sparse

vector. Theorem 5.13 mainly states that if A has a nice structure, the reconstruction of

l1 minimization has the same performance with the best sparse approximation of s0 (the

performance is measured by the 2-norm distance). Another fact makes the l1 minimization

so useful is than for a generic matrix, its restricted isometry constant is usually small.

Theorem 5.14 (RIP of Gaussian Matrices [61, 68]). Suppose A ∈ RI×J is a Gaussian

matrix with each entry follows i.i.d N(0, 1/I), then with a high probability, δk ≤ δ if

I ≥ Ck log(J/k)/δ2, (5.1.31)

where C is some positive constant.

Proof. Please see [61, 62, 68]

Theorem 5.14 shows the superiority of the restricted isometry constant over the mutual

coherence. According to the previous result, the success of the recovery under coherence

requires at least ‖s0‖0 = k ≤ O(
√
I) if I is proportional to J , but now it only requires

that (k, I, J) to scale proportionally. For practical purposes, we need to know the ex-

act constant factor C in (5.1.31). However, there is a gap in the smallest number of

measurements between the theoretical guarantee and practical good reconstruction by l1
minimization, i.e., the practical requirement of the minimal number of measurements is

far less than that of the theoretical requirement. One of the best theoretical requirement
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is given in [69], but still can not explain the good performance of l1 minimization in speech

separation, where there are only two or three microphones (I = 2 or 3). The theoretically

required minimal number of measurements for signal reconstruction by l1 minimization in

low-dimensional problems,e.g., speech separation, remains an open problem in this thesis.

More general, given Gaussian measurements, how is the performance of l1 minimization

in a low dimensional problem.

l1 minimization v.s. l2 minimization

One may also consider a l2 minimization problem

min
s
‖s‖2

s.t. x = As,
(5.1.32)

where ‖ · ‖ is the 2-norm: ‖s‖2 :=
√∑J

j=1 s
2
j . Compared to the l1 minimization, l2 min-

imization is more easier to solve since the 2-norm is differentiable everywhere. However,

the solution of the l2 minimization is not sparse. This can be illustrated in Fig. 5.1 by

a simple 2-dimensional example. The tangent point (sl21 , sl22 ) of the solid circle and the

black line is exactly the solution to the l2 minimization

min
s1,s2

√
s2

1 + s2
2

s.t. x = a1s2 + a2s2.

(5.1.33)

Both sl21 and sl22 are non-zero, i.e., the solution is not sparse. For the l1 minimization, it

can be seen in Fig. 5.2, the point (sl11 , sl12 ) where the solid 1-norm ball intersects the black

line is exactly the solution of the l1 minimization

min
s1,s2

|s1|+ |s2|

s.t. x = a1s2 + a2s2.

(5.1.34)

The solution is sparse as sl11 = 0.

5.1.2 Reweighted l1 minimization

In the previous section, we have seen the ”magical” recovery ability of the l1 minimization.

The robustness to the measurement noise and the recovery guarantee to the nearly sparse

signals makes l1 minimization practically powerful. We also qualitatively give the small-

est number of measurements (5.1.31) that l1 minimization needs for theoretical guarantee
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Figure 5.1: The solution of l2 minimization is usually not sparse. All points on the black
line satisfy the equation x = a1s1 + a2s2, and all points on the red circle (2-norm ball)
satisfy the equation s2

1 + s2
2 = b. The b corresponding to the dotted circle is smaller, and

the b for the solid circle is larger. The solid circle is exactly tangent to the black line.

Figure 5.2: The solution of l1 minimization is usually sparse. All points on the black line
satisfy the equation x = a1s1 + a2s2, and all points on the red 1-norm ball satisfy the
equation |s1| + |s2| = b. The b corresponding to the dotted 1-norm ball is smaller, and
the b for the solid 1-norm ball is larger. The solid 1-norm ball intersects the black line at
only one point on the axis.
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through RIP of Gaussian matrix, (k, I, J) to scale proportionally. As a convex relaxation

of the l0 minimization, l1 minimization needs more measurements to find the correct so-

lution. Is there another convex relaxation for l0 minimization, but with less measurement

requirements than l1 minimization or better performance with the same measurements?

The answer is positive, and the better alternative is to ”cleverly” put some weights to

punish different coefficients in the l1 norm, so-called weighted l1 minimization.

Definition 5.15 (Weighted l1 Minimization). Given a vector s ∈ RJ×1 and a set of

positive weights {w1 > 0, w2 > 0, . . . , wJ > 0}, the weighted l1 norm is defined as:

‖s‖w,1 :=
J∑
j=1
|wjsj|. (5.1.35)

The corresponding weighted l1 minimization is defined as:

min
s
‖s‖w,1

s.t. x = As.
(5.1.36)

When each entry of s has an equal weight, i.e., w1 = w2 = · · · = wJ , the weighted l1

minimization is equivalent to the l1 minimization. Hence, weighted l1 minimization is a

generalization of l1 minimization. With a smart weight design, weighted l1 minimization

is supposed to outperform l1 minimization. Recap that the definition of the l1 norm

of a vector s ∈ RJ×1 is ‖s‖1 := ∑J
j=1 |sj|, and the l0 norm is the number of non-zero

coefficients in s. Compared to the l1 norm, l0 norm is more ”democratic” - the penalty

for different coefficients (except 0) is the same. Hence a suitable weight design is to

punish different coefficients in the l1 norm to simulate this democracy of l0, that is, a

smaller weight for a larger coefficient and a larger weight for a smaller coefficient. An

example is given in Fig 5.3 for illustration. In this example, we wish to recover s0 from

measurements x = As0. The red line is the set of all the feasible solutions. Among all

the feasible solutions, there is one solution s′ 6= s0 with a smaller l1 ball, i.e., ‖s′‖1 < ‖s0‖

(see Fig. 5.3 (b)). Hence, the solution of l1 minimization is s′ rather s0. If we consider

a smaller weight on the direction of s0, then we will have a weighted l1 ball (‖s0‖w,1)

in Fig. 5.3 (c). Since there is no feasible solution with a smaller weighted l1 ball, the

weighted l1 minimization will find the correct solution.

The above example shows the superiority of weighted l1 minimization over l1 mini-

mization. In practice, this requires us to have prior knowledge or estimation of ‖s0‖.
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Figure 5.3: Weighted l1 minimization to improve sparse signal recovery. (a) Sparse signal
s0, feasible set x = As, and l1 ball of radius ‖s0‖1. (b) There exists an s′ 6= s0 for which
‖s′‖1 < ‖s0‖1. (c) Weighted l1 ball. There exists no s 6= ‖s0‖ for which ‖s‖w,1 ≤ ‖s0‖w,1

.

Candes and the rest [59] propose to compute the weights based on a simple iterative

algorithm between estimating s0 and refining the weights. The algorithm is given below:

1. Set the iteration counter l = 0, maximum iteration number lmax, and initialize the

weights w(0)
1 = w

(0)
2 = · · · = w

(0)
J = 1.

2. Solve the weighted l1 minimization

min
s
‖s‖w(l),1

s.t. x = As.
(5.1.37)

Denote the solution by s(l).

3. Update the weights: for each j ∈ 1, 2, · · · , J ,

w
(l)
j = 1

|s(l)
j |+ ε

. (5.1.38)

4. End the iteration if the number of iterations exceeds the maximum number of iter-

ations, i,e, l > lmax or if the solution converges. Otherwise, increase the iteration

number and return to the step 2.

The parameter ε in step 3 is introduced to keep the iteration process stable and allow a

nonzero estimate in the next iteration if the current estimate of a component in s(l) is
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zero. According to the empirical demonstration in [59], ε should not be set too small or

too large but the performance is quite robust to the choice of ε in a suitable range, around

10% of the standard deviation of the nonzero coefficients of s0.

5.1.3 l1 minimization for speech separation

l1 minimization is widely studied in the context of speech separation. Suppose we have

I microphones, J speech sources, and I < J . Denote the observed signal of the i-th

microphone by xi(t), the speech signal of the j-th source by sj(t). Their relationship is

given by the convolutive model (Sec. 2.2):

xi(t) =
J∑
j=1

(aij ∗ sj)(t), 1 ≤ i ≤ I, (5.1.39)

where aij is the room impulse response encoding the propagation process from the j-

source to the i-th microphone, and ∗ is convolution. One may simplify the convolution

model by applying the Short-time Fourier transform (STFT) (see Sec. 2.3.1):

xi(t, f) =
J∑
j=1

aij(f)sj(t, f), 1 ≤ i ≤ I, (5.1.40)

where xi(t, f) and sj(t, f) are STFT coefficients of xi(t) and sj(t) at the time frame t

and frequency band f , respectively; aij(f) is the Fourier transform of aij(t), called the

acoustic transfer function. When the number of microphones is less than the number

of sources (I < J), even if the mixing parameters ({aij(t),∀i, j} or {aij(f),∀i, j}) are

given, reconstructing the speech signals {sj(t), j = 1 · · · , J} or their STFT coefficients

{sj(t, f), j = 1 · · · , J} from the observed signals {xi(t), i = 1 · · · , I} or their STFT coef-

ficients {xi(t, f), i = 1 · · · , I} is not a trivial problem. This is where the l1 minimization

comes in as l1 minimization allows the reconstruction of sparse signals in the lack of

measurements. Recap the spectrogram of speech signal in Fig 4.2, most of the STFT

coefficients of a speech signal are zero or not significantly deviated from zero. In fact,

for most of the time-frequency (TF) points, only a few sound sources have contributed.

We demonstrate this claim through empirical experiments. Ignoring the TF points that

no source contributes, if a source contributes more than 10% energy, we say the source is

active for this TF point. We investigated ten groups of speech signals mixed by four sound

sources, and record the percentage of TF points for different numbers of active sources

in the Table 5.1. In this experiment, about half of the TF points were contributed more
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Group index\number of active sources 1 2 3 4
1 44.88% 35.80% 15.72% 3.60%
2 41.77% 38.65% 16.36% 3.23%
3 47.99% 39.06% 11.63% 1.32%
4 47.74% 40.05% 11.20% 1.00%
5 40.71% 38.55% 17.18% 3.55%
6 41.72% 38.82% 16.13% 3.33%
7 47.05% 39.54% 12.06% 1.35%
8 44.76% 40.80% 13.15% 1.28%
9 49.52% 37.47% 11.69% 1.31%
10 51.71% 36.60% 10.60% 1.09%

Avg. 45.79% 38.53% 13.57% 2.11%

Table 5.1: The percentage of time-frequency point of different number of active sources.
For a time-frequency point, if a source contributes more than 10% energy, this source is
an active source for this time-frequency point.

than 70% of the energy by a single source, 85% of the TF points were contributed more

than 80% of the energy by two sources. Hence, l1 minimization can be used to reconstruct

the speech sources when the number of microphones is inadequate.

For the sake of conciseness, , we introduce some notations and operators. Denote

multichannel signals by a matrix S ∈ RJ×T where J is the number of channels and T

is the number of samples. For any matrix Z, ‖Z‖1 is the summation of the entry-wise

absolute values: ‖Z‖1 := ∑
i,j |zij|. A : RJ×T → RI×T is the convolution operator defined

by

[A(S)]it =
J∑
j=1

(aij ∗ sj)(t), (5.1.41)

where sj(t) is the j-th channel signal in the S. Ψ ∈ CT×B is the discrete STFT matrix

where B = QF , Q is the number of time frames, and F is the number of frequency bands.

Ψ transforms multichannel signals S ∈ RJ×T into a matrix S̃ ∈ CJ×B containing the

STFT coefficients:

S̃ = SΨ. (5.1.42)

Denote the adjoint operator of Ψ by Ψ∗. Ψ∗ ∈ CB×T is actually the inverse discrete

STFT matrix, thus the time domain signals can be obtained from the STFT coefficients

by

S = S̃Ψ∗. (5.1.43)

Given mixed signals X ∈ RI×T and the mixing process A : RJ×T → RI×T , under the time
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domain model (5.1.39), the source signals S0 ∈ RJ×T can be estimated by the solution of

the following optimization problem:

min
S

‖SΨ‖1

s.t. X = A(S).
(5.1.44)

Considering the weighted l1 minimization and the measurement noise on X, the optimiza-

tion problem (5.1.44) can be generalized as

min
S

‖SΨ‖W,1

s.t. ‖X−A(S)‖F ≤ ε,
(5.1.45)

where W ∈ RJ×B is a matrix with positive entries wij, ‖Z‖W,1 := ∑
ij wij|zij| is weighted

l1 norm, and ε is the upper bound of the l2 norm of the measurement noise. Assuming i.i.d

Gaussian noise with zero mean and variance σ2
e , 1

σ2
e
‖X−A(S)‖2

F follows a χ2 distribution

with IT degrees of freedom. Thus set ε2 = (IT + 2
√

2IT )σ2
e . The choice of the ε provides

a likely bound for ‖X−A(S)‖F , since the probability that the l2 norm term exceeds ε is

the probability that a χ2 random variable with IT degrees of freedom exceeds its mean

IT by at least two times the standard deviation 2
√

2IT , which is very small. When there

is no prior on the noise nor design on the weight, we may set ε = 0 and wij = 1, ∀i, j.

Then the optimization problem (5.1.45) becomes (5.1.44).

Another l1 formulation is under the time-frequency domain model (5.1.39), rather

estimating the source signals directly, we can estimate their STFT coefficients:

min
S̃

‖S̃‖W,1

s.t. ‖X̃− Ã(S̃)‖F ≤ ε̃,

(5.1.46)

where X̃ = XΨ is the matrix containing the STFT coefficients of mixed signals, S̃ is the

estimated STFT coefficients of source signals, Ã : CJ×B → CI×B is the multiplication

operator defined by the equation (5.1.40), and ε̃ is the upper bound of the l2 norm of

noise. Assuming i.i.d complex Gaussian noise with variance σ2
ẽ , the l2 norm term 2

σ2
ẽ
‖X̃−

Ã(S̃)‖2
F follows a χ2 distribution with 2IB degrees of freedom. Thus set ε̃2 = (IB +

2
√
IB)σ2

ẽ according to the same argument of the setting of ε in (5.1.45). Compared to

the time domain optimization problem (5.1.45), (5.1.46) has a more practical meaning

because there is enough research work on estimating Ã , but for A, as far as we know,

there is almost no related work that can estimate A in a multi-source and reverberated
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environment. However, in the presence of high reverberation, the solution to (5.1.46) is

not a good estimate but the solution to (5.1.45) is. For the reason please refer to Sec. 2.4.

The work in this paper does not involve the estimation of A, but aims to propose a new

objective for sparse optimization-based speech separation methods.

5.2 Improved Method

In this work, we introduce a new objective to pursue the sparsity of speech signals, a

weighted l1 norm with a novel weighting design, called adaptive weighting. We find out

how to roughly estimate the STFT coefficients of the source signal and design the weights

accordingly to penalize small coefficients more heavily and penalize less heavily for large

coefficients. By doing so, the weighted l1 minimization is closer to l0 minimization than

the normal l1 minimization while can be solved using the same solver of l1 minimization

with the same computational complexity (including the computation of the weights).

Three major contributions are made through this work: 1) The proposed weighted l1

minimization has a better reconstruction performance than l1 minimization, up to 5 dB

improvement in SDR. They have the same theoretical time complexity but in practice,

the weighted l1 minimization converges faster, up to 35% faster. 2) Further improvement

can be achieved by combining the reweighted scheme [21, 59]. 3) The improvement is

robust to the estimation error of the mixing process in the time domain, i.e., A or in the

STFT domain, i.e., Ã.

5.2.1 Clustering phenomenon

The key question is how to make a quick estimate of the STFT coefficients of source

signals? Let us have some inspiration from an observation. In this experiment, we have

two microphones and three sources. Denote the STFT coefficients of mixed signals by

x(t, f) = [x1(t, f), x2(t, f)]T and the acoustic transfer functions (ATFs) from the j-th

source to the two microphones by aj(f) = [a1j(f), a2j(f)]T. We do an amplitude and

phase normalization as following:

x← x
‖x‖2

e−θ(x1), (5.2.1)

where we omit (t, f) for the sake of conciseness, and θ(x1) is the angle of the complex

number x1. The same normalization is also applied on the ATFs a(f). The amplitude and
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Figure 5.4: Clustering phenomenon of the STFT coefficients of mixed signals. We have
two microphones and three sources. The x-axis is the real value of the STFT coefficients
of the mixed/observed signal of the first microphone, and the y-axis is the imaginary value
of the STFT coefficients of the mixed signal of the second microphone. The red points
are sample points evaluated at frequency f = 265.625 Hz, and the blue lines are mixing
vectors containing mixing parameters corresponding to the three sources, respectively.

phase normalization (5.2.1) is important, otherwise we can not have the following obser-

vation. Then we draw a scatter plot of the normalized x(t, f) and draw the three vectors

{a1(f), a2(f), a3(f)} on it. Since all the numbers are complex numbers, for the sake of

visualization, the plot only considers the real value of the first entry and the imaginary

value of the second entry. Figure 5.4 shows the distribution of x(t, f) at f = 265.625 Hz.

Obviously, the samples assemble around aj(f), j = 1, 2, 3. This clustering phenomenon

echoes the fact that a large number of time-frequency points are majorly contributed by

a single source which is consistent with the table 5.1. The normalization (5.2.1) is to

eliminate the phase and amplitude differences caused by the sound source at different

times.

75



5.2.2 Short-time spectral amplitude estimator

Inspired by the Fig. 5.4, we believe that for each time-frequency point, the amplitude of

the j-th source’s STFT coefficient |sj(t, f)| can be roughly estimated by the amplitude of

the projection of x(t, f) on the aj(f). We only focus on the amplitude estimator since the

weights for the weighted l1 minimization are positive numbers. The projection is defined

in the Euclidean vector space, so vectors are real number vectors, which helps us build

geometric intuitions. For the sake of conciseness, new notations are introduced first:

h :=

<(x)

=(x)

 ∈ R2I , uj :=

<(aj)

=(aj)

 ∈ R2I ,

vj :=

−=(aj)

<(aj)

 ∈ R2I , j = 1, . . . , J,

(5.2.2)

where <{·} and ={·} are the real and the imaginary part of a complex number, respec-

tively, and x and aj are the STFT coefficients of mixed signal and ATFs of the j-th sources,

respectively (the time and frequency indices are omitted here for compactness). Remark

that, for all j, uj and vj are orthogonal to each other and have the same amplitude, i.e.,

uj ⊥ vj and ‖uj‖2 = ‖vj‖2, ∀j ∈ {1, · · · , J}.

Rewrite the time-frequency multiplication model (5.1.40) using the real vector nota-

tions, we have

h =
J∑
j=1

(
uj<(sj) + vj=(sj)

)
, (5.2.3)

where sj is the j-th source’s STFT coefficient. As can be seen from (5.2.3), h is a summa-

tion of J vectors in the J subspaces spanned by the J orthogonal bases {u1,v1}, . . . , {uJ ,vJ},

respectively. Denote by pj the projection of h to the subspace spanned by uj and vj, the

amplitude of |sj| =
√
<2(sj) + =2(sj) can be estimated by

ĉj = C · ‖pj‖2/
√
‖uj‖2‖vj‖2

∝
√

(hTuj)2 + (hTvj)2/(‖uj‖2‖vj‖2)

= |aH
j x|/(aH

j aj),

(5.2.4)

where C is a normalization factor which is independent of j. The denominator in (5.2.4) is

to eliminate the contribution of the basis vectors. To evaluate the power of this short-time

spectral amplitude estimator, we conduct an experiment where there are two microphones

and three source signals. The distance between two microphones is one meter, and there
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Figure 5.5: Source signal estimation by the short-time spectral amplitude estima-
tor (5.2.4). The x-axis is the ground truth of the amplitude of the STFT coefficient
of each source (|sj|); The y-axis is the corresponding estimation by (5.2.4). The red line
(y = x) is for reference.

is no reverberation in the environment. The experiment involves ten groups of mixed

signals (each group of mixed signals is from different source signals) and the result is

shown in Fig. 5.5. In general, the estimation is not bad, but there are some samples’

amplitude that is over-estimated. More specifically, there are some samples’ amplitude

that is close to zero, but whose estimate is significantly larger than zero. This is because

the J orthogonal bases {u1,v1}, · · · .{uJ ,vJ} are not orthogonal to each other. However,

the estimation is only used as a pre-estimation to calculate the weight calculation, and

the final estimation will be refined by the weighted l1 minimization. Hence, it does not

matter that there are parts of overestimation for the pre-estimation.

On the calculation of weight, since for a small |sj|, we should put a larger weight, one

could calculate the weight by

wj = 1
ĉj + ε

, (5.2.5)
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where ε is introduced to keep stability and to avoid infinity weight if ĉj = 0. However, we

find out that the weighted l1 minimization based on the weights calculated by (5.2.5) does

not have a good performance when the distance of the microphone is too close, e.g., 5 cm.

This is may because we did not set the ε well. We consider an alternative to calculating

the weight:

wj = ‖aj‖2

√√√√1− ( ĉj‖aj‖2

‖x‖2
)2 + ε

= ‖aj‖2

√√√√1− (
aH
j x

‖aj‖2‖x‖2
)2 + ε,

(5.2.6)

where ε is an arbitrary small number to prevent wj = 0. Remark that wj in (5.2.6) is

actually multiplication of ‖aj‖2 and the sine of the angle between x and aj, where ‖aj‖2

is to eliminate the effect that x is offset in the direction of aj due to the magnitude of aj.

5.2.3 Algorithm

Our proposed weighted l1 minimization, called adaptive weighted l1 minimization, can

be obtained by substituting the weights (5.2.6) in (5.1.46) or (5.1.45). In addition, the

weights (5.2.6) can be the initialization weights in the reweighted scheme introduced in

Sec. 5.1.2, and a more general problem, called the adaptive reweighted l1 minimization,

can be formalized. Predecessors [21] have already proposed an algorithm to estimate

speech signals using the reweighted l1 minimization, here we give a modified algorithm

(Algorithm 2) according to the proposed weights. The parameters and notations in the

algorithm are introduced below. l is the iteration counter, ρ is our defined difference

between two successive solutions to check the convergence of the reweighted process, and

lmax and µ are the maximum number of iteration and threshold for convergence, respec-

tively. B = QF where Q is the number of time frames and F is the number of frequency

bins (We reshape the two dimensions, time and frequency, in one dimension for conve-

nience). 4(X,A,W(l), ε) is the solution of the weighted l1 minimization (5.1.45). δ(l) is

a parameter to keep the stability of each weighting process and will decrease with a rate

β along with the process until a threshold δs̃. δs̃ is the standard deviation of the noise

in the STFT domain and is computed as δs̃ = δe
√
IT/2JB, and ε2 = (IT + 2

√
2IT )σ2

e .

For any matrix Z, ‖Z‖F :=
√

(∑i,j Z
2
ij) is the Frobenius norm. In Algorithm 2, we esti-

mate the source signals by iteratively solving the time domain weighted l1 minimization
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Algorithm 2: Adaptive reweighted l1 minimization for source estimation
Input: X, A, Ψ, ε

1 Initialize: l = 1, ρ = 1, compute W (0)
ij according to (5.2.6), for i = 1, · · · , J ,

j = 1, · · · , B;
2 Solve the weighted l1 minimization (5.1.45): S(0) = 4(X,A,W(0), ε);
3 δ(0) := std(S(0)Ψ);
4 while ρ > η and l < lmax do
5 Update the weight matrix: W (l)

ij = δ(l−1)/(δ(l−1) + |S̃(l−1)
ij |), for i = 1, · · · , J ,

j = 1, · · · , B with S̃ = SΨ;
6 Solve the weighted l1 minimization (5.1.45): S(l) = 4(X,A,W(l), ε);
7 Update δ(l) := max(βδ(l−1), δs̃);
8 Update ρ := ‖S(l) − S(l−1)‖F/‖S(l−1)‖F ;
9 l = l + 1;

10 end
11 Return S(l−1)

problem (5.1.45), and the reader can estimate the STFT coefficients of source signals,

i.e., S̃, by iteratively solving the time-frequency domain weighted l1 minimization prob-

lem (5.1.46) and the source signals can be obtained by applying the inverse STFT. This

is just a trivial modification of the Algorithm (5.1.45). It is worth noting some minor

changes that δ(0) := std(S̃), δs̃ = δẽ
√
I/J , and ε̃2 = (IB + 2

√
IB)δ2

ẽ . In the experiment,

we set lmax = 200 (the algorithm is usually convergent around l = 10), η = 0.001, β = 0.1,

and ε = 1e−4. Note that we only consider the noise-free case, thus ideally ε should be set

to 0 but it will take infinite iterations for solving the weighted l1 minimization, so we set

a small tolerance.

5.2.4 Weighted l1 minimization solver

In this section, we will introduce how to solve the weighted l1 minimization by applying

the proximal splitting methods. The proximal splitting methods solve the optimization

problem of the form

min
x
f(x) + g(x), (5.2.7)

where f and g are convex function. The proximal splitting methods do not require f and

g differentiable: instead of calculating the gradient, they calculate the proximal point.

Let f : Rn → R be a closed, convex, and proper (CCP) function. The proximal operator

of f is defined as:

proxf (z) = arg min
x

(f(x) + 1
2‖x− z‖2

2). (5.2.8)
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An example is when f(x) = |x|, then proxf (z) = arg minx(|x| + 1
2(x − z)2), which is the

soft-thresholding function:

proxf (z) =



z − 1, z > 1

0, −1 ≤ z ≤ 1

z + 1 z < −1.

(5.2.9)

A fixed point of proxf is z such that proxf (z) = z, and this point is also the minimizer of

f , i.e., {z | proxf (z) = z} = {arg minx f(x)}. Another property of the proximal operator is

that it is firmly non-expansive, that is, ‖proxf (x)−proxg(y)‖2
2 ≤

〈
x− y | proxf (x)− proxg(y)

〉
.

The properties imply that one can approach the minimizer of f by iteratively applying

proxf . This is how we find the minimizer of f without calculating its gradient if we

know proxf (y) for every y analytically or numerically. The Douglas-Rachford (DR) al-

gorithm [70] is an optimization algorithm based on the proximal operator to solve the

optimization problem (5.2.7). In experiment, we set lmax = 200, ηdr = 0.01, α = 1, and

γ = 0.1.

Algorithm 3: The Douglas-Rachford algorithm
1 Initialize: l = 0, ρ = 1, z, α ∈ (0, 2), γ > 0;
2 while ρ > ηdr and l < lmax do
3 x(l) = proxγg(z(l));
4 z(l+1) = z(l) + α(proxγf (2s(l) − z(l))− s(l));
5 Update ρ := ‖x(l) − x(l−1)‖/‖x(l−1)‖;
6 l = l + 1;
7 end
8 Return x(l−1)

We convert the constrained problem (5.1.45) to an unconstrained problem by intro-

ducing an indicator function gε : RJ×T → R defined as

gε(S) =


0, ‖X−A(S)‖F ≤ ε

+∞, otherwise.
(5.2.10)

The constrained problem (5.1.45) can be rewritten as

min
S
‖SΨ‖W,1 + gε(S), (5.2.11)

which can be solved by the DR algorithm. The proximal operators of the two functions

in (5.2.11) can be obtained by applying the relevant theorems of the proximal operator
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under mapping of frame [70, 71]. The STFT transform Ψ is a tight frame whose the

adjoint frame Ψ∗ is the inverse STFT, and A is a general frame whose the adjoint frame

A∗ : RI×T → RJ×T is the convolution operator defined by

[A∗(X)]jt =
I∑
i=1

(a∗ji ∗ xi)(t), (5.2.12)

where a∗ji(t) := aij(−t).

The proximal operator of the weighted l1 norm is

prox‖·Ψ‖W,1
(Z) = Z + (prox‖·‖W,1

− I)(ZΨ)Ψ∗, (5.2.13)

where prox‖·‖W,1
is the element-wise soft-thresholding function given by

[
prox‖·‖W,1

(Z)
]
ij

= proxwij‖·‖(zij)

= zij
|zij|

max(0, |zij| − wij).
(5.2.14)

The proximal operator of gε can be iteratively approached by

U(l+1) = µl(I− prox‖·‖F≤ε)(µ
−1
l U(l) + A(P(l))−X)

P(l+1) = Z−A∗(U(l+1)),
(5.2.15)

where µl ∈ (0, 2/v), v is the upper bound of frame A, and

prox‖·‖F≤ε(U) = min(1, ε

‖U‖F
)U. (5.2.16)

Then P(l+1) linearly approaches proxgε(Z). The upper bound of A is defined by a positive

number v such that ‖A(S)‖2
F ≤ v‖S‖F satisfies for all S. The tightest possible upper

bound is the operator norm of (A∗A), which can be computed by the well-known power

iteration algorithm.

Algorithm 4: The power iteration algorithm for the calculation of v
1 Initialize: V ∈ RJ×T ;
2 repeat
3 W = A∗(A(V));
4 v = ‖W‖∞;
5 V = W/v;
6 until convergence;
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5.3 Experiment

We convolve the room impulse responses (RIRs) with the source signal and add them

together to get the mixed signals whose duration are four seconds. The RIRs were gener-

ated by the software pyroomacoustics [2], with a room size of dimension 3.55m×4.45m×

2.5m(l × w × h). The number of microphones was two (I = 2). The number of sources

was in a range of three to six (3 ≤ J ≤ 6). The reverberation is set to be 0 ms (no

reverberation) and 250 ms, and the distance between two microphones are set to be 5 cm

and 1 m. No artificial noise was added since the scope is to evaluate the source recon-

struction from mixtures rather than denoising. The source-to-distortion ratio (SDR) is

used as an objective evaluation. A larger SDR indicates a better reconstruction result.

We evaluate the reconstruction ability of four optimizations: l1 minimization, reweighted

l1 minimization [21], the adaptive weighted l1 minimization, and the adaptive reweighted

l1 minimization. The first two are benchmarks and the last two are our proposed op-

timizations with the novel objective. The four optimization problems are solved by the

weighted l1 minimization solver we introduced in the Sec. 5.2.4.

5.4 Experiment Result

5.4.1 Impact of the STFT window length

Different lengths of windows will have different resolutions in the time and frequency.

For the same signal, a longer window will result in a smaller number of time frames and

more frequency bins. Consequently, the time frame will cover a longer time period, and

frequency will be more subdivided. Therefore, a long STFT window will have a low reso-

lution in the time and a high resolution in the frequency, and vice visa. Correspondingly,

the sparsity of the STFT representation of the signals will vary. The two extreme cases

are there is no resolution in time, i.e., spectrum, or no resolution in frequency, i.e., wave-

form. Since both the extreme cases will reduce the sparsity, there may exist an optimal

window length between them that results in the most sparse. To find the optimal window

length, in this experiment, we evaluated the effect of the STFT window length on the

separation performance. As shown in Fig. 5.6, regardless of the presence or absence of

reverberation, regardless of which way to pursue sparseness, the best window length is 64
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ms (1024 sample points as the sampling rate is 16 kHz). The worse performance on the

shortest window length, i.e., 8 ms, and the longest window length, i.e., 256 ms, is also

in line with our expectations. There is another ”byproduct” in this experiment. In the

presence of reverberation, the adaptive weighted l1 minimization (our proposed) shows a

poorer performance than the l1 minimization when the window length is short (less than

16 ms) and a better performance when the window length is long (longer than 64 ms).

However, in the absence of reverberation, the adaptive weighted l1 minimization always

outperforms the l1 minimization. This is reasonable since the weights are calculated based

on the time-frequency domain multiplication model which is only appropriate when the

window length is comparable to the length of reverberation.

Figure 5.6: Average SDR as a function of the STFT window length. There are two
microphones with a one-meter spacing and four speech sources. (a) Without reverberation.
(b) In the presence of RT60 = 250 ms reverberation.

5.4.2 Impact of number of sources

In this experiment, we mainly evaluate the separation performance in the different num-

ber of sources. In addition, we evaluate the impact of different distances between two

microphones. The window length is set to be 64 ms, which is the best window length

for the performance from the last experiment. The results are shown in Fig. 5.7 for 1
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m microphone spacing and Fig. 5.8 for 5 cm microphone spacing. In general, the per-

formance degrades linearly as the number of sources increases. The adaptive reweighted

l1 minimization (the proposed) always outperforms the other methods, and the adaptive

weighted l1 minimization always outperforms the l1 minimization. The superiority of the

proposed algorithms is more significant when the microphone spacing is 5 cm and there

is no reverberation, at least a 5 dB improvement. It is worth noting that in this case, i.e.,

5 cm microphone spacing and no reverberation, the reweighted l1 minimization performs

abnormally worse than the l1 minimization. The same result also appears in [21]. Finding

out why is still an open question for this thesis.

Figure 5.7: Average SDR as a function of the number of sources. There are two mi-
crophones with a one-meter spacing. (a) Without reverberation. (b) In the presence of
RT60 = 250 ms reverberation.

5.4.3 Robustness

In the practice, we only know the mixed signals observed by microphones and don’t know

the mixing process, i.e., A or Ã. Estimating the mixing process is another topic and is

out of the focus of this work. However, it is supposed to investigate the robustness of

the proposed algorithms to the estimating error of the mixing process. We manually add

different degrees of Gaussian white noise on the mixing parameters in A. For the mixing
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Figure 5.8: Average SDR as a function of the number of sources. There are two micro-
phones with a five-centimeter microphone spacing. (a) Without reverberation. (b) In the
presence of RT60 = 250 ms reverberation.

process from the j-th source to the i-th microphone, we define the mixing parameters to

the noise ratio (MPNR) as the ratio of the sum of squares of the mixing parameters from

the j-th source to the i-th microphones, i.e., aij(t), and the noise, i.e., n(t):

MPNRij := 10 log
∑
t a

2
ij(t)∑

t n2(t) . (5.4.1)

We assume for each i = 1, · · · , I and j = 1, · · · , J , the MPNRs are the same, and test the

performance of the separation algorithms under different MPNRs from 50 dB to 0 dB.

The window length of the STFT is set to be 64 ms and the microphone spacing is 1 m. As

we can see from Fig. 5.9, the superiority of the proposed algorithms is clearly maintained

until the MPNR is below 5 dB. Moreover, the adaptive weighted l1 minimization seems

more robust than the reweighted l1 minimization.

To make the claim that our proposed algorithms are robust more convincing, we

conduct another experiment in which we blindly estimate the mixing parameters of Ã,

i.e., the acoustic transfer functions (ATFs), and based on the estimation, we estimate

the STFT coefficients of the source signals. The estimation of the ATFs is exactly we

used in our second work and is introduced in Sec. 4.2.2. In short, we estimate the source
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Figure 5.9: Average SDR as a function of the mixing parameters to noise ratio. There
are two microphones with a one-meter spacing and four speech sources.

signals assuming only known the mixed signals. The result is shown in Fig. 5.10. In

the absence of reverberation, the proposed methods outperform the benchmark methods,

showing consistent robustness with the previous experiment. However, in the presence

of reverberation, due to the difficulty of estimating ATF, the separation results of all

methods are similarly bad. This is the restriction of the current ATF estimation method.

5.4.4 Time consumption

In this experiment, we evaluate the speed of the four algorithms. Theoretically, the

adaptive reweighted l1 minimization has equal time complexity to the reweighted l1 min-

imization, several times of that of the normal l1 minimization, and the adaptive weighted

l1 minimization has equal time complexity to the normal l1 minimization. However, as

we can see in Fig. 5.11, using the same l1 minimization solver, the l1 minimization with

the adaptive weights always converges faster than without adaptive weights. The more

sources, the difference is more obvious, up to 35% faster in the case of six sources and

5 cm microphone spacing. We guess the reason is that the adaptive weights indicate
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Figure 5.10: Average SDR as a function of the number of sources. There are two micro-
phones with a five-centimeter spacing. (a) Without reverberation. (b) In the presence of
RT60 = 250 ms reverberation. In this case, the mixing parameters are estimated so it is
a blind source separation.

the correct sparse structure of the solution from the beginning of the iteration while l1
minimization has no such priory information.

5.5 Summary

In this work, we propose a novel optimization framework for reconstructing source signals

in the presence of reverberation and the number of microphones being fewer than the

number of sources. More specifically, we propose a weighted l1 minimization with weights

adaptively changing with the mixed signals. The novel weights design constructs a closer

connection between the source estimation and the mixing process. Compared to the

normal l1 minimization, the proposed adaptive weighted l1 minimization shows a better

separation performance, up to 5 dB improvement in SDR. Further improvement can be

achieved by a reweighted scheme (the final result is also superior to the normal reweighted

l1 minimization). The improvement is robust to the estimation error of the mixing process,

which is proved by two experiments, the first experiment is manually adding white noise
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Figure 5.11: Average time consumption as a function of the number of sources in presence
of RT60 = 250 ms reverberation. (a) Two microphones with a five-centimeter spacing. (b)
Two microphones with a one-meter spacing.

to the mixing parameters, and the second experiment is a true blind estimation of the

mixing parameters. An additional surprise is that the adaptive weighted l1 minimization

converges faster than the normal l1 minimization using the same solver. The more sources,

the difference is more obvious, up to 35% faster in the six sources case.

For future study, one may combine the mixing process estimation and the proposed

source estimation into one optimization framework. Recently, there is one work [22] trying

to estimate the mixing process and source signals simultaneously. This work is inspiring

but the remaining challenge is how to add the update of the weights. Another future work

is to keep following the convex optimization community for potentially faster algorithms.
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Chapter 6

Conclusion

This thesis studies multi-microphone signal processing to enable speech separation in the

presence of competitive talkers, In particular,

1. We proposed a time-frequency filtering technique to extract a very weak target

signal by suppressing the interference signals: the interference suppressing response

(ISR). In the presence of 200 ms reverberation (RT60 = 200 ms), ISR can boost a

target signal from being 10 dB weaker than the interference signal to 10 dB stronger

than the interference signal. ISR still works in highly reverberant environment

(RT60 = 800 ms).

2. Based on the filtering technique, we proposed an algorithm to separate multiple

sources using two microphones without knowing the sources’ direction. The algo-

rithm adopts the framework of binary masking followed by post-filtering. We use

a well-known binary masking-based algorithm, the degenerate unmixing estimation

technique (DUET), for the preliminary separation. Then, we construct a set of

filters based on the separation results and use these filters to refine the preliminary

separation. The new algorithm has a better performance compared to some main-

stream blind source separation algorithms and a much faster processing speed (40

times faster than the non-negative matrix factorization-based algorithm).

3. When the environment has reverberation and the number of microphones is less than

the number of sound sources, we proposed to reconstruct signals by minimizing the

weighted l1 norm of their STFT coefficients. Compared to normal l1 minimization,

experiments show a consistent performance improvement of our weighted l1 mini-

mization, up to 5 dB SDR improvement. The reconstruction speed is also faster,
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up to 35%. Further performance improvement can be achieved by combining a

reweighted scheme to iteratively refine the result.

6.1 Key findings

The key findings of this thesis are

1. If the time-domain filter is too long and the pursuit of sparsity is considered, it is

a better alternative to filter in the time-frequency domain. Because each frequency

is processed separately, this reduces the length of the filter and avoids the compu-

tational complexity caused by the pursuit of sparsity. This is demonstrated in our

first work (Chapter 3).

2. The different speech signals in the STFT domain are neither completely disjoint nor

completely overlapped. The completely disjoint assumption is too strong for source

separation, resulting in the bad performance of binary masking. A better way is

to use some information obtained from disjoint regions to help separate overlapped

regions. This is demonstrated by our second work (Chapter 4), where spatial filters

are computed using information from the disjoint region to take out interference

components in the overlapped region.

3. The mixed signal’s STFT coefficients are not arbitrarily distributed, with proper

normalization, these STFT coefficients will cluster. If there are N sources, there

will be N clusters. This phenomenon is more obvious when there is no reverbera-

tion, which can be utilized to estimate the mixing process or to roughly estimate the

STFT coefficients of sources. The latter is demonstrated in our third work (Chap-

ter 5) where we utilized it to compute the weights for the weighted l1 minimization.

4. Too long or too short STFT window length degrades the signal reconstruction per-

formance of l1 minimization, implying the reduction of sparsity. In our experiments,

the optimal window length is 64 ms or 1024 samples under a 16 kHz sampling rate.
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6.2 Limitations

Here we discuss the limitations of this thesis as well as some questions for further consid-

eration.

1. The proposed ISR filter innately introduces distortion to the target signal although

the distortion is mild (as if the target signal being processed by a high-frequency

pass filter) and does not affect the understanding of semantics.

2. The proposed BSS algorithm in our second work assumes the number of sources,

which may cause problems in practical applications. However, this is a general

assumption in most BSS algorithms.

3. Predictably the proposed BSS algorithm in our second work will fail in high rever-

beration environments. One reason is that reflections produce some ”fake” spatial

cues (each reflection produces a virtual sound source), and algorithms have diffi-

culty for source separation without knowing the direction of the real sound source.

So far, speech separation in a highly reverberant environment still remains to be a

challenge.

4. In a highly reverberant environment, the longer the STFT window, the more effec-

tive our proposed weights are. However, as mentioned in our key findings, if the

STFT window is too long, sparsity is reduced and the results worsen.

5. Although we analyzed the recovery ability of l1 minimization for sparse signals, our

conclusions on this matter are somewhat qualitative and not sharpened enough to

explain the good performance of l1 minimization in speech separation where the

dimension is extremely low, with only a few microphones and sources. The recovery

ability of l1 minimization in low-dimensional problems is expected to be explored,

e.g., the distribution of the restricted isometry constant of a Gaussian matrix with

small number of rows and columns.

6. In the case of 5 cm microphone spacing and the absence of reverberation, the

reweighted l1 minimization shows a worse-than-expected performance. This still

remains an open question in this thesis.
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6.3 Future works

In this section, we discuss some natural extensions of the works concluded in this thesis

and some directions for further exploration.

1. Robust MVDR. This thesis generalizes ISR and minimum variance distortionless

response (MVDR), pointing out that they come from the same type of filter: both

try to suppress interference signals under some linear constraint that is based on

different criteria. For example, maximizing the signal-to-interference ratio will de-

rive MVDR. There is a large space to explore different filters obtained from different

criteria. Most notable among these is robust MVDR, which is robust to the target

direction estimation.

2. Real-time blind source separation. Design a real-time version for our BSS

algorithm. The key is how to construct the binary masks and update the parameters

of the filters in real-time.

3. Blind sparse reverberant speech separation. Currently, when we reconstruct

the source signal using weighted l1 minimization, the mixing process is assumed to

be known. If the mixing process is not available, we can attempt to simultaneously

estimate the mixing process, weights, and source signals. If the mixing process is

available in some practical applications, we may borrow the idea from the Bayesian

inference to modify some current blind source separation algorithms in which the

mixing process is assumed not available. This should make for better separation re-

sults. Or the mixing process can be somehow translated into information about the

current reverberant environment. This will be useful in civil engineering. Further-

more, the signal reconstruction by current l1 minimization solver is time-consuming.

We should keep following the convex optimization community for a potentially faster

l1 minimization solver.
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