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 A B S T R A C T

Equilibrium K-means (EKM) represents a novel advancement in fuzzy clustering methodologies, outperforming 
Bezdek’s fuzzy C-means (FCM) algorithm when applied to datasets with imbalanced distributions. Nonetheless, 
EKM is inherently limited by its inability to integrate supervision information, rendering it less effective in 
scenarios wherein partial data labels are accessible. In this paper, we propose a semi-supervised variant of 
EKM (SSEKM) that can effectively leverage supervision knowledge. The effects of supervision knowledge on 
the model and convergence behavior are elucidated via theoretical analysis. Empirical evaluations conducted 
on four synthetic and 16 real-world datasets from medical, biological, and industrial sectors indicate that 
SSEKM exhibits competitive performance against semi-supervised FCM (SSFCM) and other state-of-the-art 
semi-supervised fuzzy clustering algorithms on balanced datasets and surpasses them on imbalanced datasets. 
Additionally, SSEKM maintains a computational complexity comparable to SSFCM and offers a higher 
convergence speed than most comparative algorithms.
1. Introduction

1.1. Semi-supervised Fuzzy clustering

The objective of fuzzy clustering is to allocate data objects to mul-
tiple clusters on the basis of their similarity, often quantified through 
metrics such as Euclidean distance. It assigns a membership value for 
each object, indicating the degree of association between the object 
and a cluster. This methodology is extensively applied in fields such 
as image segmentation, pattern recognition, and marketing. Neverthe-
less, traditional fuzzy clustering techniques are unsupervised, rendering 
them suboptimal when partial supervision is available, that is, when 
some data labels are known. In recent years, numerous semi-supervised 
fuzzy clustering (SSFC) methods have been devised to effectively in-
tegrate the information provided by partial supervision. Given that 
even a small degree of human intervention (e.g., 5%–10% labeled 
data) can substantially enhance clustering outcomes, SSFC has garnered 
significant interest within the machine-learning community. State-of-
the-art (SOTA) SSFC algorithms have been comprehensively reviewed 
in the literature [1,2].

Numerous SSFC algorithms have been developed on the basis of 
Bezdek’s fuzzy C-means (FCM) algorithm [3], with a focus on managing 
the influence of partial supervision on the outcomes of unsupervised 
models. Pedrycz and Waletzky [4] proposed a semi-supervised FCM 
(SSFCM) framework that additively combines unsupervised and super-
vised objectives. Subsequent research [5–8] has extended Pedrycz’s 
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SSFCM by refining its approach to utilizing partial supervision at differ-
ent levels. Recently, Kmita et al. [9] proposed an innovative version of 
SSFCM that elucidates the impact of partial supervision. Additionally, 
alternative models to FCM have been adapted for semi-supervised 
frameworks [10–12], including possibilistic C-means (PCM) [13] and 
possibilistic FCM (PFCM) [14]. The primary distinction between FCM 
and PCM lies in the implementation and interpretation of the soft 
assignment of data points; specifically, membership in PCM is redefined 
as a measure of typicality. PFCM represents a hybridization of FCM and 
PCM.

1.2. Uniform effect: The drawback of FCM

Most fuzzy clustering algorithms inherently tend to form clusters 
of similar sizes [15]. This phenomenon is referred to as the uniform 
effect [16]. It substantially undermines the performance of these algo-
rithms when applied to datasets characterized by class-size disparities, 
commonly known as imbalanced data. Such imbalanced datasets are 
prevalent in various domains, such as medical diagnosis, fraud detec-
tion, and rare event prediction. The uniform effect markedly hinders 
the effective application of fuzzy clustering algorithms in these sectors.

The uniform effect arises owing to several intrinsic factors. The 
fundamental principle of fuzzy clustering is to identify cluster proto-
types, namely centroids, and to partition the data based on the dis-
tance between the data points and centroids. All aforementioned fuzzy 
https://doi.org/10.1016/j.knosys.2025.113990
Received 25 February 2025; Received in revised form 28 May 2025; Accepted 18 J
vailable online 5 July 2025 
950-7051/© 2025 Elsevier B.V. All rights are reserved, including those for text and
une 2025

 data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/knosys
https://www.elsevier.com/locate/knosys
https://orcid.org/0000-0003-2057-5576
mailto:yhebh@connect.ust.hk
https://doi.org/10.1016/j.knosys.2025.113990
https://doi.org/10.1016/j.knosys.2025.113990


Y. He Knowledge-Based Systems 326 (2025) 113990 
Fig. 1. Clustering results of a highly imbalanced dataset. (a) Ground truth. The colors represent the reference labels. (b) Clustering by Bezdek’s FCM [3]. (c) Clustering by a SOTA 
SSFCM [9]. (d) Clustering by the proposed SSEKM. Supervision points are marked with square boxes.
clustering algorithms, unsupervised and semi-supervised, employ a 
similar formulation for centroid calculation: centroids are computed as 
weighted means of data feature vectors, with the weights corresponding 
to the value or exponent of the membership. This centroid computation 
method becomes problematic in scenarios involving highly imbalanced 
datasets. As membership values are non-negative and larger classes 
contain more data points, the cumulative weight from the larger classes 
dominates the centroid updates. This systematic bias draws all cen-
troids toward larger classes, resulting in clusters of equal size regardless 
of the true data distribution. Fig.  1 illustrates the uniform effect. Fig. 
1(b) and Fig.  1(c) depict the clustering results of Bezdek’s FCM [3] and 
a SOTA version of SSFCM [9], respectively. In these illustrations, the 
square boxes denote the data objects with known class labels, referred 
to as supervision points. These points are obtained by randomly selecting 
30% of data objects from each class and treating them as labeled data. 
As evident from the figures, the centroids of both FCM and SSFCM 
deviate from the smaller cluster and converge within the larger cluster.

1.3. Existing efforts to overcome uniform effect

Research addressing the mitigation of the uniform effect in fuzzy 
clustering is sparse, primarily because of the limited knowledge of 
the true distribution of data under unsupervised and semi-supervised 
learning. This subsection briefly reviews the existing efforts aimed at 
overcoming this challenge. Some researchers [17–19] have proposed 
calculating the centroids of supervised data, referred to as supervision 
centroids, and subsequently adjusting the final centroids to align more 
closely with the supervision centroids. However, a notable limitation 
of this approach concerns the necessity of carefully adjusting weights 
assigned to supervision points when computing supervision centroids. If 
not meticulously calibrated, even low weights assigned for supervision 
points distant from the class centroid can introduce errors, which 
would not occur otherwise, in the final partitions [17]. This sensitivity 
undermines the reliability of the method, particularly when the quality 
of partial supervision is uncertain.

Other researchers [20–22] have attempted to counter the uniform 
effect by weighting membership on the basis of the relative size of 
the cluster to which a data point belongs. However, this method lacks 
robustness and is susceptible to noise and outliers [22]. Alternatively, 
researchers [23,24] have proposed generating a greater number of 
clusters, termed sub-clusters, than initially required, and then merging 
these sub-clusters to form the final clusters. While effective for imbal-
anced data, this method is complex and necessitates multiple stages. 
More importantly, these algorithms [20–24] are purely unsupervised 
and do not incorporate the insights provided by partial supervision. 
Recently, a novel fuzzy clustering method known as equilibrium K-
means (EKM) has been proposed [25]. EKM modifies the constraints 
in FCM and allows data objects to exert a repulsive force on centroids, 
thereby achieving excellent performance on imbalanced data. However, 
similar to other methods, EKM does not leverage partial supervision 
knowledge.
2 
1.4. Research gap

Despite advancements in SSFC, the challenge of effectively clus-
tering imbalanced data persists. The uniform effect necessitates the 
development of more robust solutions. Current methodologies for ad-
dressing imbalanced data clustering often do not fully exploit partial 
supervision, thereby missing opportunities to enhance clustering ac-
curacy. By bridging this gap, the efficacy and applicability of SSFC 
techniques can be remarkably enhanced.

1.5. Contribution

This study aimed to address the aforementioned research gap by 
integrating supervision knowledge into EKM, thereby enhancing its 
clustering performance on imbalanced datasets when partial supervi-
sion is available. Specifically, the objective function of EKM is first 
modified to incorporate the influence of known data labels. Our anal-
ysis explicitly demonstrates how partial supervision affects centroid 
formation. Second, we derive a convergence condition for the pro-
posed method, referred to as semi-supervised equilibrium K-means 
(SSEKM). This condition elucidates the relationship among the con-
vergence speed, quantity of labeled data, and parameter controlling 
the impact of partial supervision. Generally, an increase in supervised 
data correlates with faster convergence, whereas the impact of the 
parameter is more complex. Finally, the performance of SSEKM is 
validated across 20 datasets, benchmarking it against numerous SOTA 
SSFC algorithms. The experimental results underscore the efficiency of 
the proposed SSEKM on imbalanced datasets. One example is presented 
in Fig.  1(d). The SSEKM framework is illustrated in Fig.  2. In contrast 
to FCM and SSFCM, SSEKM perfectly accomplishes an imbalanced data 
clustering. SSEKM outperforms EKM and is more robust to parameter 
variations. In terms of computational complexity, SSEKM is theoreti-
cally and practically comparable to SSFCM, and it is faster than many 
SOTA SSFC algorithms.

1.6. Organization

The rest of the paper is organized as follows. In Section 2, we 
introduce preliminaries about FCM and EKM, highlighting their sim-
ilarity and difference. We formulate the proposed SSEKM in Section 3 
along with theoretical analysis. Experimental results and the related 
discussion are presented in Section 4. Finally, we conclude in Section 5.

2. Preliminaries

2.1. Fuzzy C-means

The similarity between two points is defined using the Euclidean 
distance 𝑑 = ‖𝐱 − 𝐜 ‖ , where 𝐱  is the 𝑛th data point and 𝐜  is the 
𝑘𝑛 𝑛 𝑘 2 𝑛 𝑘
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Fig. 2. An illustration of the SSEKM framework for data clustering. (a) A dataset with partially human-labeled data. (b) Data are normalized with zero mean and unit variance for 
each feature. (c) Cluster centroids (𝐜𝑎1 and 𝐜𝑎2) are initially selected by K-means++, and each data point is allocated to the cluster where the nearest cluster centroid is located. (d) 
Cluster centroids are iteratively updated under the guidance of partial supervision knowledge, until the stopping criteria are met and the final centroids (𝐜𝑏1 and 𝐜𝑏2) are obtained.
centroid of the 𝑘th cluster. FCM calculates the centroids by solving the 
following optimization problem 

min
𝐜1 ,…,𝐜𝐾 ,[𝑢𝑘𝑛]

𝑁
∑

𝑛=1

𝐾
∑

𝑘=1
(𝑢𝑘𝑛)𝑚𝑑2𝑘𝑛

subject to 𝑢𝑘𝑛 ∈ [0, 1] ∀𝑘, 𝑛,
𝐾
∑

𝑘=1
𝑢𝑘𝑛 = 1∀𝑛,

0 <
𝑁
∑

𝑛=1
𝑢𝑘𝑛 < 𝑁 ∀𝑘,

(1)

where 𝑢𝑘𝑛 is the membership value of the 𝑛th data point belonging to 
the 𝑘th cluster, 𝐾 is the number of clusters, 𝑁 is the number of data 
points, and 𝑚 ∈ (1,+∞) is a parameter controlling the fuzziness level. 
Applying the Lagrange multiplier method, an iterative algorithm can be 
derived from the necessary conditions for finding the optimal solution, 
as given below [26]:

1. Calculate the membership value of the 𝑛th data point belonging 
to the 𝑘th cluster: 
𝑢(𝜏)𝑘𝑛 = 1

∑𝐾
𝑖=1

(

𝑑(𝜏)𝑘𝑛

𝑑(𝜏)𝑖𝑛

)
2

𝑚−1

. (2)

2. Recalculate the weighted centroid of the 𝑘th cluster by: 

𝐜(𝜏+1)𝑘 =
∑

𝑛(𝑢
(𝜏)
𝑘𝑛 )

𝑚𝐱𝑛
∑

𝑛(𝑢
(𝜏)
𝑘𝑛 )

𝑚
, (3)

where 𝜏 denotes the number of iterations and 𝑑(𝜏)𝑘𝑛 = ‖𝐱𝑛 − 𝐜(𝜏)𝑘 ‖2. The 
time complexity of one iteration is 𝑂(𝑁𝐾2). Linear convergence of FCM 
can be guaranteed with arbitrary initial centroids [27].

2.2. Equilibrium K-means

Alternatively, EKM finds centroids by solving the following opti-
mization problem 

min
𝐜1 ,…,𝐜𝐾

𝑁
∑

𝑛=1

𝐾
∑

𝑘=1
𝑢𝑘𝑛𝑑

2
𝑘𝑛

subject to 𝑢𝑘𝑛 =
exp(−𝛼𝑑2𝑘𝑛)

∑𝐾
𝑘=1 exp(−𝛼𝑑

2
𝑘𝑛)

∀𝑘, 𝑛,

(4)

where ∑𝐾
𝑘=1 𝑢𝑘𝑛 = 1 and 𝛼 ∈ (0,+∞) is a suitable positive number. The 

optimization algorithm is based on a quasi-Newton method, given by

1. Calculate the individual contribution of the 𝑛th data point to the 
𝑘th cluster: 

𝑤(𝜏)
𝑘𝑛 = 𝑢(𝜏)𝑘𝑛

[

1 − 𝛼
(

(𝑑(𝜏)𝑘𝑛 )
2 −

𝐾
∑

𝑢𝑖𝑛(𝑑
(𝜏)
𝑖𝑛 )2

)]

, (5)

𝑖=1

3 
2. Recalculate the weighted centroid of the 𝑘th cluster by: 

𝐜(𝜏+1)𝑘 =
∑𝑁

𝑛=1 𝑤
(𝜏)
𝑘𝑛 𝐱𝑛

∑𝑁
𝑛=1 𝑤

(𝜏)
𝑘𝑛

. (6)

The time complexity of one iteration is the same as that of FCM, 
which is 𝑂(𝑁𝐾2). Linear convergence can be guaranteed with arbi-
trary initial centroids at a sufficiently small 𝛼 (kindly refer to Sec-
tion 3.4). Practically, 𝛼 can be determined by statistical measures, such 
as variance [25].

2.3. Comparison between FCM and EKM

Both FCM (3) and EKM (6) calculate the centroid as the weighted 
mean of data points. The distinction lies in the individual contribution, 
which is defined as 𝑢𝑚𝑘𝑛 in FCM and 𝑤𝑘𝑛 in EKM. Given that 𝑢𝑚𝑘𝑛 ≥ 0,∀𝑘, 𝑛, 
and 𝑚 > 1, the centroids computed by FCM tend to gravitate towards 
larger clusters. Consequently, FCM exhibits a uniform effect when 
applied to imbalanced data, leading to suboptimal clustering outcomes. 
Most fuzzy clustering algorithms (including both unsupervised and 
semi-supervised approaches) employ a similar definition of individual 
contribution as in FCM, which limits their efficacy on imbalanced 
datasets. By contrast, 𝑤𝑘𝑛 can assume either negative or positive values. 
If the 𝑘th centroid is nearest to the 𝑛th data point, the centroid is 
attracted; if it is farthest, it is repelled. As a result, centroids computed 
by EKM are not concentrated in large clusters but are repelled by 
them instead. Ultimately, these centroids are accommodated by smaller 
clusters.

Nevertheless, one limitation of EKM is the necessity of precise 
tuning 𝛼 to achieve optimal clustering performance. Partial supervision 
offers an opportunity to adjust individual contributions in EKM when 
the value of 𝛼 is suboptimal.

3. Semi-supervised equilibrium K-means

3.1. Objective function

Typically, partial supervision knowledge is represented as a binary 
matrix 𝐅 = [𝑓𝑘𝑛] (called the prior matrix), which has the same di-
mension as that of the membership matrix. If the 𝑛th data point is 
known to belong to the 𝑘th cluster, then 𝑓𝑘𝑛 = 1; otherwise, 𝑓𝑘𝑛 = 0. 
If a column in 𝐅 contains all zero entries, it indicates that the label 
of the corresponding data point is unknown and is therefore classified 
as unsupervised. Conversely, a non-zero entry signifies that the data 
point is supervised. For convenience, we define an auxiliary variable 𝑏𝑛; 
𝑏𝑛 = 1 if the 𝑛th data point is supervised (implying ∑𝐾

𝑘=1 𝑓𝑘𝑛 = 1) and 
𝑏𝑛 = 0 if unsupervised (implying ∑𝐾

𝑘=1 𝑓𝑘𝑛 = 0). Notably, 𝐅 need not be 
strictly binary. The choice of 𝐅 hold nuanced implications, which will 
be discussed in Section 3.3.
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The proposed objective function for SSEKM is formulated as follows: 

𝐽SSEKM =
𝑁
∑

𝑛=1

𝐾
∑

𝑘=1
𝑢𝑘𝑛𝑑

2
𝑘𝑛 + 𝜃

𝑁
∑

𝑛=1
𝑏𝑛

𝐾
∑

𝑘=1
(𝑓𝑘𝑛 − 𝑢𝑘𝑛)𝑑2𝑘𝑛. (7)

where the parameter 𝜃 ∈ [0,+∞) controls the trade-off between un-
supervised and supervised components. Larger 𝜃 values prioritize su-
pervision, forcing centroids to align with the labeled data. By contrast, 
smaller 𝜃 values emphasize the intrinsic data structure. This objective 
function is an additive combination of two terms where the first term is 
purely unsupervised and the second term is supervised. One advantage 
of this objective function is that the effect of partial supervision on the 
model and convergence is explainable. Kindly refer to Section 3.3 and 
Section 3.4 for the explanation. The minimization problem for SSEKM 
is defined as: 

min
𝐜1 ,…,𝐜𝐾

𝐽SSEKM(𝐜1,… , 𝐜𝐾 )

subject to 𝑢𝑘𝑛 =
exp(−𝛼𝑑2𝑘𝑛)

∑𝐾
𝑘=1 exp(−𝛼𝑑

2
𝑘𝑛)

,∀𝑘, 𝑛.
(8)

When 𝜃 = 0 or ∀𝑛, 𝑏𝑛 = 0 (i.e., no supervision points), the optimization 
problem (8) reduces to (4), rendering the SSEKM equivalent to EKM.

3.2. Optimization

We solve the above optimization problem using a quasi-Newton 
method. The objective function 𝐽SSEKM contains the first-order partial 
derivative of 

∇𝐜𝑘𝐽SSEKM = −2
𝑁
∑

𝑛=1
�̃�𝑘𝑛(𝐱𝑛 − 𝐜𝑘), (9)

where 

�̃�𝑘𝑛 = 𝑤𝑘𝑛 + 𝜃𝑏𝑛(𝑓𝑘𝑛 −𝑤𝑘𝑛) ∀𝑘, 𝑛, (10)

and 𝑤𝑘𝑛 is the weight as defined in (5). The Hessian of 𝐽SSEKM is given 
by 

𝜕2𝐽SSEKM
𝜕𝐜2𝑘

= 2
𝑁
∑

𝑛=1

(

�̃�𝑘𝑛𝐈 − 2𝛼(1 − 𝜃𝑏𝑛)𝑢𝑘𝑛
∑

𝑖≠𝑘
𝑤𝑖𝑛𝐃𝑘𝑛

)

, (11)

where 𝐈 is the identity matrix and 𝐃𝑘𝑛 = (𝐱𝑛 − 𝐜𝑘)(𝐱𝑛 − 𝐜𝑘)𝑇  is a rank-
1 matrix. Notice that 𝑢𝑘𝑛

∑

𝑖≠𝑘 𝑤𝑖𝑛 ∝ 𝑢𝑘𝑛
∑

𝑖≠𝑘 𝑢𝑖𝑛 = 𝑢𝑘𝑛(1 − 𝑢𝑘𝑛), which 
is smaller than 𝑢𝑘𝑛 especially when 𝑢𝑘𝑛 → 1 (which means the data 
has well-separated structure). Hence, we can approximate the Hessian 
by the first term: 𝜕2𝐽SSEKM

𝜕𝐜2𝑘
≈ 2

∑𝑁
𝑛=1 �̃�𝑘𝑛𝐈. According to the Newton 

method, we have the following optimization process 

𝐜(𝜏+1)𝑘 = 𝐜(𝜏)𝑘 +
𝑁
∑

𝑛=1

�̃�(𝜏)
𝑘𝑛

∑𝑁
𝑛=1 �̃�

(𝜏)
𝑘𝑛

(𝐱𝐧 − 𝐜(𝜏)𝐤 ). (12)

Or we can rewrite it into a more concise form of the mean of data 
points, which is 

𝐜(𝜏+1)𝑘 =
∑𝑁

𝑛=1 �̃�
(𝜏)
𝑘𝑛 𝐱𝑛

∑𝑁
𝑛=1 �̃�

(𝜏)
𝑘𝑛

. (13)

The convergence condition for the iterative process is given in Sec-
tion 3.4. For clarity, the optimization procedure of SSEKM is summa-
rized in Algorithm 1. In each iteration, updating weights and centroids 
requires 𝑂(𝑁𝐾2) and 𝑂(𝑁𝐾) operations, respectively. Hence, the time 
complexity of SSEKM for a single iteration is 𝑂(𝑁𝐾2), the same as that 
of EKM. In practice, SSEKM often demonstrates a higher convergence 
rate than EKM, as it requires fewer iterations. This is attributed to the 
convergence condition of SSEKM, as elucidated in Section 3.4.
4 
Algorithm 1: Semi-Supervised Equilibrium K-Means
Input:  A dataset 𝐗 = {𝐱𝑛}𝑁𝑛=1, initial centroids {𝐜

(0)
𝑘 }𝐾𝑘=1, prior 

matrix 𝐅 = [𝑓𝑘𝑛], parameter values of 𝛼 and 𝜃.
Output: Centroids {𝐜1,⋯ , 𝐜𝐾} and membership matrix 𝐔 = [𝑢𝑘𝑛]
𝜏 = 0;
repeat

Compute weight �̃�(𝜏)
𝑘𝑛  by (5) and (10) for all 𝑘, 𝑛;

Update centroid 𝐜(𝜏+1)𝑘  by (13) for all 𝑘;
𝜏 = 𝜏 + 1;

until convergence;
Calculate membership matrix 𝐔 = [𝑢𝑘𝑛] according to its constraint 
in (8);
return {𝐜(𝜏)𝑘 }𝐾𝑘=1 and 𝐔

Fig. 3. Individual contribution of a data point to the second centroid, i.e., 𝑤2𝑛 for EKM 
and �̃�2𝑛 for SSEKM. The first centroid and the 𝑛th data point are fixed at 𝑥 = 0 and 
𝑥 = 1, respectively. The curves are functions of the position of the second centroid. The 
data point is a supervision point known to belong to the second cluster, i.e., 𝑓2𝑛 = 1.

3.3. Impact of partial supervision on model

The individual contribution �̃�𝑘𝑛 is expanded for two types of data 
points: 

�̃�𝑘𝑛 =

{

𝑤𝑘𝑛, if 𝑏𝑛 = 0,
𝑤𝑘𝑛 + 𝜃(𝑓𝑘𝑛 −𝑤𝑘𝑛), if 𝑏𝑛 = 1

(14)

As evident from the equations, SSEKM processes unsupervised data 
similar to that of EKM. For supervised data (i.e., 𝑏𝑛 = 1), the learning 
is adjusted through the term 𝜃(𝑓𝑘𝑛 −𝑤𝑘𝑛). If 𝑓𝑘𝑛 > 𝑤𝑘𝑛, then �̃�𝑘𝑛 > 𝑤𝑘𝑛
because 𝜃 > 0. This implies that partial supervision enhances the 
alignment between the labeled data and centroids. If 𝑓𝑘𝑛 < 𝑤𝑘𝑛, then 
�̃�𝑘𝑛 < 𝑤𝑘𝑛, mitigating the harmful influence of the mismatch between 
class centroids and cluster centroids obtained by the algorithm. This 
correction is optimal when the value of 𝑓𝑘𝑛 equals an ideal individual 
contribution that generates optimal partitions and centroids. Therefore, 
it is beneficial to investigate the construction of 𝐅. However, this is out 
of the scope of this study. In this paper, 𝐅 is set to be a binary matrix 
following the conventions in literature.

To illustrate the positive effect of the impact, consider a simple 
example on the 𝑥-axis. Fix the first centroid at 𝑥 = 0 and the 𝑛th 
data point at 𝑥 = 1. Let the 𝑛th data point be known to belong to the 
second cluster. Fig.  3 shows the plots of 𝑤2𝑛 and �̃�2𝑛 as functions of the 
position of the second-cluster centroid. As observed, 𝑤2𝑛 is negative in 
the range 𝑥 ∈ [3, 5] and nearly zero for 𝑥 > 5. This is undesired as the 
𝑛th data point pushes the second-cluster centroid further. By contrast, 
�̃�2𝑛 remains positive even for 𝑥 >= 3, indicating that the 𝑛th data point 
draws the second-cluster centroid closer to it.



Y. He Knowledge-Based Systems 326 (2025) 113990 
3.4. Convergence analysis

We derive a convergence condition of SSEKM based on the fixed-
point theorem, which gives fruitful insights regarding the impact of 
parameters and supervision knowledge on the convergence of SSEKM. 

Theorem 1 (Convergence Condition).  The centroid sequence obtained 
by (13) converges linearly to a stationary point {𝐜∗1 ,… , 𝐜∗𝐾} of the objective 
function 𝐽SSEKM (7) if a constant 0 < 𝑣 < 1 exists with
𝑀𝑘(𝛼; {𝐜1,… , 𝐜𝐾}) ≤ 𝑣, ∀𝑘, {𝐜1,… , 𝐜𝐾} ∈ S,

where

S ∶= {{𝐜1,… , 𝐜𝐾} ∶ ‖𝐜𝑘 − 𝐜∗𝑘‖2 ≤ ‖𝐜(0)𝑘 − 𝐜∗𝑘‖2 ∀𝑘},

and

𝑀𝑘 ∶= |

𝑁
∑

𝑛=1
�̃�𝑘𝑛|

−1 𝑁
∑

𝑛=1
|1 − 𝜃𝑏𝑛|2𝛼𝑢𝑘𝑛|1 −𝑤𝑘𝑛|𝑑𝑘𝑛

⋅‖𝐱𝑛 −
∑

𝑛 �̃�𝑘𝑛𝐱𝑛
∑

𝑛 �̃�𝑘𝑛
‖2.

Proof.  Define 𝑓 (𝐜𝑘) = (
∑𝑁

𝑛=1 �̃�𝑘𝑛𝐱𝑛)∕(
∑𝑁

𝑛=1 �̃�𝑘𝑛). Observe the gradient 
of 𝐽SSEKM given in (9), it is clear that any stationary point of 𝐽SSEKM is 
a fixed point of 𝑓 and vice versa. Hence, we have
‖𝐜(𝜏)𝑘 − 𝐜∗𝑘‖2 = ‖𝑓 (𝐜(𝜏−1)𝑘 ) − 𝐜∗𝑘‖2

≤ ‖𝑓 ′(𝝃𝑘)‖𝐹 ‖𝐜
(𝜏−1)
𝑘 − 𝐜∗𝑘‖2,

where 𝑓 ′ denotes the first derivative of 𝑓 , 𝝃𝑘 is a point on the line with 
𝐜(𝜏−1)𝑘  and 𝐜∗𝑘 as endpoints, and ‖ ⋅ ‖𝐹  denotes the Frobenius norm. The 
inequality holds according to the median value theorem. The function 
𝑓 has the first derivative of

𝑓 ′(𝐜𝑘) = (
𝑁
∑

𝑛=1
�̃�𝑘𝑛)−1

𝑁
∑

𝑛=1
(1 − 𝜃𝑏𝑛)2𝛼𝑢𝑘𝑛(1 −𝑤𝑘𝑛)

⋅(𝐱𝑛 − 𝐜𝑘)(𝐱
𝖳

𝑛 −
∑𝑁

𝑛=1 �̃�𝑘𝑛𝐱
𝖳

𝑛
∑𝑁

𝑛=1 �̃�𝑘𝑛
)

Note that ‖𝑓 ′(𝐜𝑘)‖𝐹 ≤ 𝑀𝑘 ∀𝐜𝑘 by triangular inequality and {𝝃1,… ,
𝝃𝐾} ∈ S, we have
‖𝐜(𝜏)𝑘 − 𝐜∗𝑘‖2 ≤ 𝑣‖𝐜(𝜏−1)𝑘 − 𝐜∗𝑘‖2 ≤ …

≤ 𝑣𝜏‖𝐜(0)𝑘 − 𝐜∗𝑘‖2 ∀𝑘 = 1,… , 𝐾.

Since 𝑣 < 1,

lim
𝜏→∞

‖𝐜(𝜏)𝑘 − 𝐜∗𝑘‖2 ≤ lim
𝜏→∞

𝑣𝜏‖𝐜(0)𝑘 − 𝐜∗𝑘‖2 = 0∀𝑘 ■

Here, we prove that when 𝛼 is sufficiently small, the convergence 
condition given in Theorem  1 can be satisfied with arbitrary initial 
centroids. As 𝛼 → 0, 𝑢𝑘𝑛 → 1∕𝐾, 𝑤𝑘𝑛 → 1∕𝐾, and �̃�𝑘𝑛 → 1∕𝐾 if 𝑏𝑛 = 0
or �̃�𝑘𝑛 → 1∕𝐾 + 𝜃(𝑓𝑘𝑛 − 1∕𝐾) if 𝑏𝑛 = 1. Consequently, 𝑀𝑘 → 0, and the 
convergence is achieved in a single iteration. As 𝑀𝑘 is a continuous 
function of 𝛼, the convergence condition of SSEKM can be satisfied 
when 𝛼 is sufficiently small.

Next, we discuss the benefit of partial supervision for faster con-
vergence, providing a theoretical justification for the results observed 
in the subsequent experiments. The term 𝑀𝑘 is the sum of 𝑁 non-
negative terms, each multiplied by a factor of |1 − 𝜃𝑏𝑛|. Therefore, when 
0 < 𝜃 < 2, terms with 𝑏𝑛 = 1 become smaller than their values in the 
unsupervised scenario, resulting in a reduction of 𝑀𝑘. Consequently, 
𝑀𝑘 decreases with increasing number of supervision points. As the 
value of 𝑀𝑘 sets the lower bound of the distance traveled by centroids 
toward stationary points in a single iteration, a smaller 𝑀𝑘 indicates a 
higher convergence rate. In other words, partial supervision accelerates 
the convergence, and the speed of convergence increases as the number 
of supervision points increases. When all observations are supervised 
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and 𝜃 = 1, SSEKM can converge in a single step because 𝑀𝑘 = 0. 
Although 𝑀𝑘 increases when 𝜃 > 2, it does not necessarily imply a 
lower convergence speed for SSEKM. A tighter lower bound of con-
vergence speed is given by ‖𝑓 ′(𝐜𝑘)‖2, which may decrease (indicating 
faster convergence) when 𝜃 > 2 because of the cancellation of positive 
and negative terms in the sum. Experimental evidences demonstrate 
that SSEKM converges faster than EKM when 𝜃 > 2.

3.5. The choice of parameters

SSEKM contains three tunable parameters: 𝛼, 𝜃, and {𝑓𝑘𝑛}𝑘,𝑛. The 
parameter 𝛼 is utilized to scale the distance, and it is recommended 
that it should be inversely proportional to the data variance [25]. Such 
a choice ensures that the convergence behavior and the trained model 
are more independent of similarity measures.

The parameter 𝜃 is used to balance the supervised and unsupervised 
components within the objective function. In [4], the authors suggest 
that its value be proportional to the ratio 𝑁∕𝑆, where 𝑁 is the total 
number of data points and 𝑆 is the number of supervision points. This 
ensures an equal weighting for the two components. We endorsed this 
choice and experimentally determined that setting 𝜃 = 𝑁∕𝑆 yielded 
optimal clustering results in most scenarios.

The parameter set {𝑓𝑘𝑛}𝑘,𝑛 is intended to represent the ideal value 
of the individual contribution for supervision points. Conventionally, 
𝑓𝑘𝑛 = 1 if the 𝑛th data point is known to belong to the 𝑘th cluster, and 
𝑓𝑘𝑛 = 0 otherwise. We follow this binary definition for a fair comparison 
in our experiment. Although this definition may not be optimal for 
SSEKM, it remains effective and the most practical choice.

4. Numerical experiments

4.1. Experimental setup

Numerical experiments were conducted to compare the perfor-
mance of our proposed SSEKM algorithm with one hard and 11 fuzzy 
clustering algorithms, namely 1. HKM [28] (Lloyd, 1982) 2. FCM [3] 
(Bezdek et al. 1984) 3. MEFC [29] (Karayiannis, 1994) 4. PFCM [14] 
(Pal et al. 2005) 5. EKM [25] (He, 2024) 6. eSFCM [7] (Yasunori et al. 
2009) 7. SSFCMp97 [4] (Pedrycz and Waletzky, 1997) 8. SSFCMk24 [9] 
(Kmita et al. 2024) 9. SFC-ER [8] (Salehi et al. 2021) 10. SSPCM [10] 
(Liu and Wu, 2013) 11. SPFCM [11] (Antoine et al. 2018) 12.
FWSSPCM [19] (Yu et al. 2024). The first five comparative algorithms 
are unsupervised, and the other seven are semi-supervised. The al-
gorithms were implemented in MATLAB R2022a and executed on an 
Ubuntu 18.04.1 LTS system equipped with an Intel Core i9-9900K CPU 
(3.60 GHz X 16 threads) and 62.7 GiB of memory.

The experimental datasets consisted of four synthetic datasets that 
we generated, named Data-A, Data-B, Data-C, and Data-D, in addition 
to 13 real-world datasets sourced from the UCI repository [30]. These 
UCI datasets were as follows: Image Segmentation (IS), Seeds, Wine, 
Rice, Wisconsin Diagnostic Breast Cancer (WDBC), Ecoli, Htru2, Zoo, 
Glass, Shill Bidding, Anuran Calls, Occupancy Detection, and Machine 
Failure. Furthermore, three datasets were incorporated from Kaggle: 
Heart Disease, Pulsar Cleaned, and Bert-Embedded Spam. In total, 20 
datasets were used, and Table  1 lists their attributes, such as name, 
number of instances, number of features, number of reference classes, 
and coefficient of variation (CV). In previous literature [31], the CV 
was used to quantify the degree of imbalance in a data distribution, 
and it was calculated by dividing the standard deviation of class sizes 
by the mean. For class sizes 𝑁1,… , 𝑁𝐾 , the CV is expressed as follows 

CV = 𝑠∕�̄�, (15)

where

�̄� =
∑𝐾

𝑘=1 𝑁𝑘 , 𝑠 =

√

∑𝐾
𝑘=1(𝑁𝑘 − �̄�)2

.

𝐾 𝐾 − 1
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Table 1
Detailed description of 20 Datasets.
 ID Name Instances Feature Classes CV  
 D1 Data-A 2250 2 3 1.4468 
 D2 Data-B 2250 2 3 1.4468 
 D3 Data-C 5200 2 2 1.3054 
 D4 Data-D 5400 2 9 2.7500 
 D5 IS 2310 19 7 0  
 D6 Seeds 210 7 3 0  
 D7 Heart Disease 1125 13 2 0.0373 
 D8 Wine 178 13 3 0.1939 
 D9 Rice 3810 7 2 0.2042 
 D10 WDBC 569 30 3 0.3604 
 D11 Zoo 101 16 7 0.8937 
 D12 Glass 214 9 6 1.0767 
 D13 Ecoli 336 7 8 1.1604 
 D14 Htru2 17898 8 2 1.1552 
 D15 Shill Bidding 6321 9 2 1.1122 
 D16 Anuran Calls 7195 22 10 1.6016 
 D17 Occupancy Detection 20560 5 2 0.7608 
 D18 Machine Failure 9815 7 2 1.3318 
 D19 Pulsar Cleaned 14987 7 2 1.3561 
 D20 Bert-Embedded Spam 5572 768 2 1.0350 

In [31], a CV greater than 1 signifies a significant imbalance in class 
sizes, whereas a CV below 0.3 suggests uniform class sizes. However, 
no universally accepted CV threshold exists for determining whether a 
dataset is balanced or imbalanced. For clarity, datasets with a CV under 
0.4 were categorized as balanced, and those with a CV above 0.7 were 
considered imbalanced. Notably, no datasets have a CV between 0.4 
and 0.7; hence, this range was undefined.

All datasets were normalized to ensure that each feature has a 
zero mean and unit variance, and all features were used for cluster-
ing. This standard normalization ensures baseline comparability. In 
practical application, domain-specific preprocessing techniques (such 
as hybrid feature selection for agricultural sensing [32] and noise 
reduction for global positioning systems in urban areas [33]) can 
be utilized to enhance clustering performance by suppressing irrele-
vant features or outliers in scenarios such as radiation oncology [34], 
steganography [35], and near-infrared breast imaging [36]. The num-
ber of clusters was set to match the reference class count. Convergence 
was considered achieved when the change in centroid positions be-
tween successive iterations became sufficiently small relative to their 
magnitude, i.e., 
(

∑𝐾
𝑘=1 ‖𝐜

(𝜏)
𝑘 − 𝐜(𝜏−1)𝑘 ‖

2
2

)1∕2

(

∑𝐾
𝑘=1 ‖𝐜

(𝜏)
𝑘 ‖

2
2

)1∕2
≤ 1e−3. (16)

To prevent indefinite iterations due to non-convergence, the maximum 
number of iterations was limited to 500. In our experiments, this 
limit suffices for the convergence of all algorithms. The centroids were 
initialized using the K-means++ algorithm [37]. Given the variability 
in K-means++ outputs and the non-convex nature of the clustering 
algorithms, which allow multiple local optima, convergence may occur 
at a local optimum. To approximate the global optimum, the algorithm 
was executed 100 times, and the solution with the lowest objective 
value was selected. This process was termed a trial. For each trial, 
we randomly selected 30% of all the instances from each class as 
labeled instances, in accordance with previous studies [8,12,38]. To 
mitigate the bias originating from the selection of labeled instances, 
50 trials were conducted and the results were averaged to ensure 
experimental reliability. Conducting 50 trials with 100 repetitions per 
trial proved to be sufficient to produce statistically reliable results, 
as indicated by a low standard deviation. The normalized mutual 
information (NMI) [39], the adjusted rand index (ARI) [40], and the 
clustering accuracy index (ACC) [41] were employed as the evaluation 
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metrics. Both NMI and ACC range from 0 to 1, with 0 indicating no 
mutual agreement and 1 representing the perfect agreement between 
two clustering results. ARI ranges from −1 to 1, in which −1 implies 
that the two data clustering results are completely dissimilar, 0 indi-
cates that they are essentially random, and 1 implies that they are 
perfectly aligned. These evaluation metrics are widely used in existing 
semi-supervised clustering studies [12,19,38].

Unless otherwise specified, all comparative algorithms were imple-
mented using the default parameters recommended in their respective 
literature. The scaling factor 𝜃 was set to be equal to 𝑁∕𝑆 where 
𝑁 is the total number of instances and 𝑆 is the number of labeled 
instances. When 30% of instances are selected as labeled instances, 𝜃 =
1∕0.3 ≈ 3.33. The parameter 𝜃 was set such that the unsupervised and 
supervised terms in the objective function shared the same importance. 
The same specification was adopted for the comparative algorithms 
(SSFCMp97, SSFCMk24, SFC-ER, SSPCM, and SPFCM) with such a scal-
ing parameter. This step was done to ensure a fair comparison. In 
addition, a 𝜃 value of 1∕0.3 was observed to provide the optimal results 
for all the above semi-supervised clustering algorithms.

FCM, PFCM, SSFCMp97, SSFCMk24, SSPCM, SPFCM, FWSSPCM em-
ployed a typical fuzzifier value of 𝑚 = 2 [42]. For SSEKM, we set 
𝛼 = 1 for the four artificial datasets. For the 16 real-world datasets 
with varying feature numbers, the parameter 𝛼 was set proportional to 
the data variance, as follows 
𝛼 = 2∕𝑑0𝑛, (17)

where 𝑑0𝑛 = 1
2
∑𝑁

𝑛=1 ‖𝐱𝑛‖
2
2∕𝑁 . The rationale for this selection is ex-

plained in Section 3.5. For the prior matrix 𝐅 = [𝑓𝑘𝑛], if the 𝑛th instance 
is known to belong to 𝑘th cluster, 𝑓𝑘𝑛 = 1; otherwise 𝑓𝑘𝑛 = 0. All 
the semi-supervised clustering algorithms used for comparison have 
such prior matrices and the same configuration was adopted for a fair 
comparison.

4.2. Artificial datasets

Fig.  4 shows the scatter plots for the four artificial datasets alongside 
selected clustering results. The average values and standard deviations 
of the evaluation metrics across 50 trials are presented in Table  2, 
with the best outcomes highlighted in bold. The data points in Data-
A followed a Gaussian distribution, whereas Data-B featured points 
that followed a uniform distribution. Data-C and Data-D comprised a 
mix of Gaussian and uniform distributions, with Data-C predominantly 
containing Gaussian-distributed points and Data-D primarily consisting 
of uniformly distributed points. Additionally, Data-D included a greater 
number of classes than Data-C. All four artificial datasets exhibited 
significant imbalance, as indicated by their CV values exceeding one.

As evident from Table  2, the proposed SSEKM demonstrated supe-
rior performance on these artificial datasets, achieving over 0.9 NMI, 
0.95 ARI, and 99% ACC across all datasets. SSEKM significantly out-
performed SSFCM and FWSSPCM, the latter being an SOTA algorithm 
specifically designed for imbalanced data. SSEKM surpassed EKM on 
Data-A, Data-B, and Data-D. Additionally, it exhibited a comparable 
performance with EKM on Data-C.

4.3. Real datasets with balanced data

To evaluate the effectiveness of SSEKM on balanced datasets, it was 
applied to six real-world datasets: IS, Seeds, Heart Disease, Wine, Rice, 
and WDBC. These datasets exhibited uniform class sizes, with CV values 
below 0.4. Therefore, they were classified as balanced according to 
our criteria. The clustering results are presented in Table  3. SSEKM 
outperformed all the comparative algorithms on the IS, Heart Disease, 
and WDBC datasets. For the remaining three datasets, SSEKM performs 
competitively with the best comparative algorithm, with a small ACC 
gap of below 1% for the Seeds and Wine datasets, and 2% for the 
Rice dataset. SSEKM enhanced the performance of EKM across all six 



Y. H
e

Table 2
Experimental results on four artificial datasets with 𝐶𝑉 > 1. The true labels of 30% of the data are given as supervised knowledge (the best performance is in bold).
 Dataset Measurement HKM FCM MEFC PFCM EKM eSFCM SSFCMP97 SSFCMK24 SFC-ER SSPCM SPFCM FWSSPCM SSEKM  
 
Data-A

NMI 0.5150
±0.0001

0.4982
±0.0001

0.2270
±0.0002

0.4984
±0.0001

0.9126
±0.0000

0.5452
±0.0043

0.5449
±0.0041

0.5720
±0.0046

0.5452
±0.0043

0.6157
±0.0127

0.5230
±0.0061

0.8338
±0.1063

0.9372
±0.0136

 

 ARI 0.2906
±0.0002

0.2485
±0.0002

0.0756
±0.0003

0.2489
±0.0003

0.9616
±0.0000

0.3670
±0.0041

0.3567
±0.0064

0.4245
±0.0083

0.3670
±0.0042

0.6170
±0.0235

0.3936
±0.0075

0.9114
±0.0885

0.9717
±0.0081

 

 ACC 0.6893
±0.0003

0.6075
±0.0006

0.4818
±0.0003

0.6089
±0.0009

0.9933
±0.0000

0.7700
±0.0034

0.7610
±0.0056

0.8118
±0.0053

0.7699
±0.0034

0.9135
±0.0078

0.8092
±0.0052

0.9763
±0.0216

0.9950
±0.0015

 

 
Data-B

NMI 0.5193
±0.0000

0.5160
±0.0000

0.2121
±0.0001

0.5181
±0.0001

0.9981
±0.0057

0.5596
±0.0016

0.5503
±0.0020

0.5675
±0.0027

0.5596
±0.0016

0.5554
±0.0060

0.5491
±0.0056

0.7054
±0.2248

1.0000
±0.0000

 

 ARI 0.2529
±0.0000

0.2452
±0.0000

0.0547
±0.0000

0.2498
±0.0003

0.9992
±0.0023

0.3536
±0.0041

0.3304
±0.0050

0.3735
±0.0067

0.3536
±0.0040

0.4329
±0.0128

0.4185
±0.0113

0.7465
±0.2008

1.0000
±0.0000

 

 ACC 0.6116
±0.0000

0.5852
±0.0002

0.4607
±0.0016

0.6022
±0.0009

0.9999
±0.0004

0.7566
±0.0037

0.7340
±0.0053

0.7736
±0.0055

0.7566
±0.0037

0.8315
±0.0075

0.8203
±0.0069

0.9279
±0.0562

1.0000
±0.0000

 

 
Data-C

NMI 0.0909
±0.0000

0.0797
±0.0000

0.0892
±0.0000

0.0782
±0.0001

0.9514
±0.0000

0.1804
±0.0029

0.1380
±0.0018

0.1833
±0.0043

0.1804
±0.0029

0.1125
±0.0201

0.1644
±0.0035

0.2260
±0.0041

0.9152
±0.0163

 

 ARI 0.0181
±0.0000

0.0034
±0.0001

0.0159
±0.0001

0.0015
±0.0001

0.9807
±0.0000

0.1470
±0.0043

0.0842
±0.0027

0.1512
±0.0065

0.1469
±0.0043

0.1094
±0.0073

0.1231
±0.0052

0.2155
±0.0061

0.9617
±0.0091

 

 ACC 0.5754
±0.0000

0.5302
±0.0002

0.5689
±0.0002

0.5237
±0.0002

0.9987
±0.0000

0.7835
±0.0041

0.7094
±0.0040

0.7894
±0.0059

0.7835
±0.0040

0.7598
±0.0073

0.7591
±0.0057

0.8365
±0.0039

0.9973
±0.0007

 

 
Data-D

NMI 0.4799
±0.0316

0.3185
±0.0010

0.3963
±0.0670

0.2353
±0.0554

0.9463
±0.0104

0.3626
±0.0036

0.3225
±0.0364

0.4102
±0.0234

0.3625
±0.0027

0.2002
±0.0549

0.2527
±0.0591

0.7892
±0.2065

0.9915
±0.0599

 

 ARI 0.1096
±0.0195

0.0467
±0.0007

0.1506
±0.0360

0.0389
±0.0183

0.9954
±0.0049

0.0633
±0.0023

0.0779
±0.0140

0.1278
±0.0160

0.0631
±0.0025

0.0320
±0.0161

0.0425
±0.0330

0.6642
±0.3222

0.9845
±0.1096

 

 ACC 0.3593
±0.0555

0.2559
±0.0080

0.4893
±0.0133

0.3699
±0.0380

0.9763
±0.0045

0.3342
±0.0124

0.4628
±0.0248

0.5702
±0.0277

0.3342
±0.0124

0.4333
±0.1254

0.3911
±0.0684

0.8959
±0.1237

0.9927
±0.0516
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Fig. 4. Scatter diagrams of artificial datasets. (a)–(d) Primitive scatter diagrams with reference class labels (indicated by colors). (e)–(f) Clustering results of some SOTA SSFC 
algorithms. (i)–(l) Clustering results of the proposed SSEKM. The black crosses represent centroids obtained by each algorithm.
datasets, particularly on IS, where ACC increased by 30%, and on Heart 
Disease, where ACC improved by 10%. Notably, although SSEKM was 
specifically designed for imbalanced datasets, it also showed promising 
results on balanced datasets.

4.4. Real datasets with imbalanced data

The real datasets considered in this study comprised the following: 
Ecoli, Htru2, Zoo, Glass, Shill Bidding, Anuran Calls, Occupancy De-
tection, Machine Failure, Pulsar Cleaned, and Bert-Embedded Spam. 
Among these, Htru2 and Occupancy Detection contained large volumes 
of data. Glass and Ecoli comprised six and eight classes, respectively, 
and Zoo was noted for its high dimensionality. These datasets exhibited 
imbalanced class sizes, with CV values exceeding 0.7. Bert-Embedded 
Spam featured more than 700 attributes. Given that Euclidean distance 
is ineffective for clustering in high-dimensional spaces, we applied 
principal component analysis to the Bert-Embedded Spam dataset. The 
clustering was performed using the first five principal components, as 
additional components did not enhance and even degraded the perfor-
mance. The results are presented in Table  4, with the best outcomes 
highlighted in bold.

As illustrated in Table  4, SSEKM outperformed all comparative 
algorithms on seven datasets by a substantial margin. For example, 
SSEKM achieved ARI scores of 0.7919, 0.9493, and 0.9879 on the Ecoli, 
Anuran Calls, and Machine Failure datasets, respectively, whereas the 
corresponding scores obtained by SSFCMk24 were 0.6309, 0.6399, and 
0.0613. The highest scores exhibited by the comparative algorithms 
on the above datasets were 0.6309, 0.6721, and 0.9482, respectively. 
SSEKM ranked second on the Zoo and Shill Bidding datasets, and 
fourth on the Occupancy Detection. SSFCMk24 achieved the highest 
performance on Zoo, whereas FWSSPCM excelled on Shill Bidding and 
Occupancy Detection. SSEKM and SSFCMk24 exhibited nearly identical 
NMI and ACC scores (less than their standard deviation) on Zoo, 
with SSEKM displaying a higher ARI score. FWSSPCM performed more 
effectively on the Shill Bidding dataset, which comprised nine features, 
8 
as its feature weighting mechanism is specifically designed for high-
dimensional data. For the Occupancy Detection dataset, data points 
were considerably decentralized in the feature space. Therefore, fuzzy 
clustering algorithms with a typicality- or possibilistic-based partition 
(such as SSPCM, SPFCM, and FWSSPCM) offer greater advantages than 
other algorithms. Overall, this experiment demonstrated the superior-
ity of SSEKM over existing SOTA algorithms on imbalanced datasets. 
Moreover, SSEKM was one of the most computationally efficient algo-
rithms tested, whereas FWSSPCM exhibited the highest computational 
cost (kindly refer to Section 4.7). As expected, SSEKM improved the 
performance of EKM on all the tested datasets.

4.5. Study of parameter impact

4.5.1. Impact of 𝛼
We investigated the influence of 𝛼 on SSEKM performance. SSEKM 

was executed with 𝛼 values of 0.1,0.2,0.5,0.8,1,2, 5, 8, and 10 on the 
four artificial datasets. Fig.  5 presents the corresponding NMI values for 
the above 𝛼 values, with the NMI value of EKM serving as a reference. 
The results demonstrated that SSEKM was highly robust to variations 
in the value of 𝛼.

4.5.2. Impact of 𝜃
The impact of the parameter 𝜃 on SSEKM performance was assessed. 

Recall that 𝜃 is used to balance the unsupervised and supervised compo-
nents within the objective function. We set 𝜃 to be proportional to 𝑁∕𝑆, 
and in this experiment, 𝑁∕𝑆 = 1∕0.3. Fig.  6 shows the NMI score as 
a function of 𝜃 for four selected imbalanced datasets. The same trends 
were observed across the remaining datasets; therefore, the correspond-
ing results were omitted for brevity. Excessively large or small values of 
𝜃 evidently deteriorated the performance of SSEKM. The optimal value 
of 𝜃 was observed in the range where the unsupervised and supervised 
components displayed similar importance, which was approximately 
around 𝜃 = 𝑁∕𝑆. This result highlights the significance of balancing 
the knowledge of data structure (i.e., unsupervised knowledge) and 
supervised knowledge.
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Table 3
Experimental results on the selected six real-world datasets with 𝐶𝑉 < 0.4. The true labels of 30% of the data are given as supervised knowledge (The best performance is in bold).
 Dataset Measurement HKM FCM MEFC PFCM EKM eSFCM SSFCMP97 SSFCMK24 SFC-ER SSPCM SPFCM FWSSPCM SSEKM  
 
IS

NMI 0.5873
±0.0008

0.5950
±0.0057

0.6206
±0.0009

0.4962
±0.0241

0.6618
±0.0138

0.7752
±0.0079

0.7720
±0.0091

0.7921
±0.0100

0.7329
±0.0158

0.6093
±0.0409

0.6970
±0.0147

0.3546
±0.0319

0.8027
±0.0090

 

 ARI 0.4608
±0.0005

0.4960
±0.0059

0.4979
±0.0005

0.3650
±0.0149

0.4810
±0.0089

0.7444
±0.0129

0.7418
±0.0111

0.7672
±0.0160

0.6648
±0.0181

0.4049
±0.0629

0.5620
±0.0180

0.0784
±0.0652

0.7825
±0.0114

 

 ACC 0.5456
±0.0003

0.6578
±0.0146

0.5943
±0.0002

0.5276
±0.0139

0.5609
±0.0118

0.8701
±0.0097

0.8676
±0.0068

0.8835
±0.0099

0.8054
±0.0111

0.6576
±0.0373

0.7580
±0.0207

0.4382
±0.0547

0.8930
±0.0067

 

 
Seeds

NMI 0.7279
±0.0000

0.7318
±0.0056

0.7496
±0.0016

0.7170
±0.0000

0.7315
±0.0000

0.8091
±0.0220

0.7985
±0.0230

0.7981
±0.0214

0.8093
±0.0216

0.7839
±0.0247

0.7905
±0.0253

0.7343
±0.0290

0.7948
±0.0223

 

 ARI 0.7733
±0.0000

0.7768
±0.0058

0.7968
±0.0017

0.7607
±0.0000

0.7715
±0.0000

0.8512
±0.0218

0.8418
±0.0225

0.8408
±0.0222

0.8514
±0.0215

0.8260
±0.0266

0.8324
±0.0271

0.7690
±0.0298

0.8363
±0.0228

 

 ACC 0.9190
±0.0000

0.9209
±0.0023

0.9285
±0.0007

0.9143
±0.0000

0.9190
±0.0000

0.9483
±0.0079

0.9450
±0.0083

0.9446
±0.0081

0.9484
±0.0078

0.9389
±0.0099

0.9415
±0.0100

0.9162
±0.0119

0.9427
±0.0084

 

 
Heart Disease

NMI 0.3162
±0.0000

0.0142
±0.0132

0.2500
±0.0000

0.2326
±0.0975

0.2571
±0.0000

0.4272
±0.0199

0.3967
±0.0166

0.4273
±0.0224

0.4259
±0.0198

0.4345
±0.0206

0.4207
±0.0243

0.3971
±0.0187

0.4562
±0.0248

 

 ARI 0.3641
±0.0000

0.0033
±0.0042

0.3140
±0.0000

0.2995
±0.1230

0.3162
±0.0000

0.5178
±0.0208

0.4940
±0.0187

0.5249
±0.0238

0.5145
±0.0207

0.5364
±0.0220

0.5212
±0.0267

0.4959
±0.0211

0.5541
±0.0269

 

 ACC 0.8020
±0.0000

0.5249
±0.0202

0.7805
±0.0000

0.7653
±0.0689

0.7815
±0.0000

0.8592
±0.0073

0.8516
±0.0067

0.8623
±0.0082

0.8588
±0.0072

0.8663
±0.0075

0.8610
±0.0092

0.8522
±0.0075

0.8722
±0.0091

 

 
Wine

NMI 0.8759
±0.0000

0.8759
±0.0000

0.8759
±0.0000

0.8097
±0.0171

0.8920
±0.0000

0.9137
±0.0234

0.9090
±0.0231

0.9063
±0.0271

0.9141
±0.0232

0.8993
±0.0300

0.9136
±0.0309

0.8510
±0.0247

0.9087
±0.0293

 

 ARI 0.8975
±0.0000

0.8975
±0.0000

0.8975
±0.0000

0.8249
±0.0142

0.9134
±0.0000

0.9329
±0.0199

0.9289
±0.0231

0.9259
±0.0245

0.9332
±0.0197

0.9270
±0.0239

0.9383
±0.0231

0.8670
±0.0292

0.9275
±0.0271

 

 ACC 0.9663
±0.0000

0.9663
±0.0000

0.9663
±0.0000

0.9396
±0.0051

0.9719
±0.0000

0.9781
±0.0065

0.9767
±0.0066

0.9757
±0.0081

0.9782
±0.0065

0.9763
±0.0080

0.9800
±0.0076

0.9560
±0.0102

0.9764
±0.0089

 

 
Rice

NMI 0.5685
±0.0000

0.5688
±0.0000

0.5682
±0.0004

0.5742
±0.0008

0.5659
±0.0005

0.6706
±0.0075

0.6675
±0.0075

0.6715
±0.0077

0.6705
±0.0075

0.6732
±0.0082

0.6699
±0.0076

0.6764
±0.0076

0.6735
±0.0077

 

 ARI 0.6815
±0.0000

0.6824
±0.0000

0.6817
±0.0004

0.6876
±0.0008

0.6777
±0.0004

0.7758
±0.0066

0.7733
±0.0066

0.7768
±0.0067

0.7758
±0.0066

0.7781
±0.0072

0.7749
±0.0067

0.7810
±0.0067

0.7785
±0.0068

 

 ACC 0.9129
±0.0000

0.9131
±0.0000

0.9129
±0.0001

0.9147
±0.0002

0.9117
±0.0001

0.9404
±0.0019

0.9397
±0.0019

0.9407
±0.0019

0.9404
±0.0019

0.9411
±0.0021

0.9402
±0.0019

0.9419
±0.0019

0.9412
±0.0019

 

 
WBDC

NMI 0.5547
±0.0000

0.5612
±0.0000

0.5547
±0.0000

0.5700
±0.0000

0.5513
±0.0025

0.7016
±0.0263

0.6674
±0.0232

0.6832
±0.0262

0.6790
±0.0275

0.6000
±0.0288

0.6321
±0.0232

0.7301
±0.0283

0.7122
±0.0324

 

 ARI 0.6707
±0.0000

0.6829
±0.0000

0.6707
±0.0000

0.6895
±0.0000

0.6444
±0.0028

0.8052
±0.0221

0.7778
±0.0195

0.7898
±0.0222

0.7839
±0.0231

0.6444
±0.0325

0.6806
±0.0232

0.8079
±0.0282

0.8188
±0.0261

 

 ACC 0.9104
±0.0000

0.9139
±0.0000

0.9104
±0.0000

0.9156
±0.0000

0.9027
±0.0009

0.9490
±0.0061

0.9414
±0.0055

0.9447
±0.0062

0.9431
±0.0065

0.9028
±0.0099

0.9137
±0.0082

0.9498
±0.0077

0.9508
±0.0072
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Table 4
Experimental results on the selected ten real-world datasets with 𝐶𝑉 > 0.7. The true labels of 30% of the data are given as supervised knowledge (the best performance in bold).
 Dataset Measurement HKM FCM MEFC PFCM EKM eSFCM SSFCMP97 SSFCMK24 SFC-ER SSPCM SPFCM FWSSPCM SSEKM  
 
Zoo

NMI 0.8381
±0.0268

0.7764
±0.0019

0.8179
±0.0000

0.6611
±0.0806

0.7912
±0.0188

0.8981
±0.0246

0.8308
±0.0158

0.9187
±0.0257

0.8976
±0.0247

0.7370
±0.0529

0.8196
±0.0634

0.7593
±0.0875

0.9143
±0.0343

 

 ARI 0.7546
±0.0487

0.6235
±0.0010

0.6444 
±0.0000

0.4868
±0.0829

0.8181
±0.0783

0.8972
±0.0495

0.6976
±0.0382

0.9305
±0.0268

0.8956
±0.0247

0.5800
±0.1122

0.7410
±0.1447

0.7227
±0.1428

0.9324
±0.0434

 

 ACC 0.8248
±0.0310

0.6832
±0.0000

0.7228
±0.0000

0.6267
±0.0536

0.8507
±0.0566

0.9232
±0.0261

0.8085
±0.0271

0.9521
±0.0174

0.9222
±0.0258

0.7717
±0.0793

0.8624
±0.0868

0.8075
±0.0734

0.9420
±0.0251

 

 
Glass

NMI 0.3140
±0.0046

0.3073
±0.0003

0.3120
±0.0012

0.0721
±0.0069

0.3764
±0.0370

0.3916
±0.0326

0.3849
±0.0249

0.4240
±0.0357

0.4072
±0.0221

0.3286
±0.0594

0.3500
±0.0270

0.3589
±0.0493

0.4510
±0.0385

 

 ARI 0.1702
±0.0026

0.1529
±0.0005

0.1651
±0.0009

0.0070
±0.0059

0.1978
±0.0193

0.2650
±0.0417

0.2382
±0.0235

0.2704
±0.0335

0.2711
±0.0246

0.1290
±0.0494

0.1731
±0.0286

0.1472
±0.0512

0.3275
±0.0533

 

 ACC 0.4586
±0.0076

0.4021
±0.0011

0.4487
±0.0007

0.3368
±0.0054

0.4796
±0.0086

0.5601
±0.0355

0.5187
±0.0319

0.5737
±0.0384

0.5704
±0.0258

0.4989
±0.0338

0.5056
±0.0390

0.4608
±0.0598

0.6316
±0.0468

 

 
Ecoli

NMI 0.6379
±0.0040

0.5695
±0.0115

0.6096
±0.0076

0.5012
±0.0649

0.6426
±0.0024

0.7063
±0.0172

0.6846
±0.0210

0.7119
±0.0195

0.7072
±0.0174

0.5987
±0.0506

0.6749
±0.0354

0.3852
±0.0078

0.7443
±0.0212

 

 ARI 0.5032
±0.0070

0.4142
±0.0204

0.4815
±0.0270

0.3357
±0.0752

0.5157
±0.0013

0.5995
±0.0253

0.5588
±0.0405

0.6309
±0.0223

0.6022
±0.0210

0.4661
±0.0963

0.5944
±0.1046

0.1897
±0.0059

0.7919
±0.0334

 

 ACC 0.6461
±0.0103

0.5769
±0.0160

0.6238
±0.0218

0.5302
±0.0435

0.6482
±0.0043

0.7506
±0.0182

0.7255
±0.0289

0.7756
±0.0170

0.7533
±0.0168

0.6595
±0.0683

0.7408
±0.0719

0.6095
±0.0035

0.8670
±0.0188

 

 
Htru2

NMI 0.4068
±0.0000

0.4100
±0.0004

0.4075
±0.0002

0.1289
±0.0002

0.5872
±0.0003

0.6627
±0.0188

0.5458
±0.0068

0.6022
±0.0073

0.6782
±0.0098

0.3563
±0.0000

0.4955
±0.0613

0.4738
±0.0155

0.6901
±0.0091

 

 ARI 0.6071
±0.0000

0.5796
±0.0005

0.6075
±0.0002

0.0462
±0.0002

0.7333
±0.0002

0.8204
±0.0131

0.7204
±0.0064

0.7760
±0.0057

0.8288
±0.0056

0.4063
±0.0000

0.6044
±0.0588

0.6305
±0.0172

0.8388
±0.0057

 

 ACC 0.9366
±0.0000

0.9252
±0.0001

0.9366
±0.0000

0.6091
±0.0002

0.9661
±0.0000

0.9750
±0.0023

0.9557
±0.0013

0.9667
±0.0010

0.9766
±0.0009

0.9359
±0.0000

0.9518
±0.0169

0.9351
±0.0040

0.9777
±0.0008

 

 
Shill Bidding

NMI 0.0021
±0.0001

0.0023
±0.0000

0.0042
±0.0002

0.0012
±0.0000

0.6216
±0.0000

0.4786
±0.2058

0.1061
±0.0077

0.3094
±0.0098

0.7143
±0.0110

0.1563
±0.0145

0.2954
±0.0040

0.7935
±0.0059

0.7588
±0.0128

 

 ARI −0.0006
±0.0000

−0.0002
±0.0000

−0.0002
±0.0000

−0.0002
±0.0000

0.7914
±0.0000

0.5320
±0.2625

0.1159
±0.0058

0.2954
±0.0159

0.8344
±0.0088

0.1721
±0.0103

0.2738
±0.0066

0.8845
±0.0043

0.8733
±0.0091

 

 ACC 0.5020
±0.0002

0.5059
±0.0000

0.5090
±0.0003

0.5035
±0.0002

0.9674
±0.0000

0.8777
±0.0814

0.6939
±0.0041

0.8001
±0.0081

0.9718
±0.0017

0.7353
±0.0061

0.7887
±0.0037

0.9808
±0.0008

0.9791
±0.0016

 

 
Anuran Calls

NMI 0.6775
±0.0195

0.5699
±0.0002

0.6155
±0.0022

0.4270
±0.0153

0.6229
±0.0134

0.6743
±0.0247

0.6727
±0.0042

0.7471
±0.0090

0.7261
±0.0250

0.4506
±0.0224

0.6168
±0.0221

0.3462
±0.0027

0.8467
±0.0079

 

 ARI 0.5826
±0.0174

0.3414
±0.0009

0.4017
±0.0027

0.2254
±0.0694

0.5145
±0.0329

0.5340
±0.0577

0.4693
±0.0040

0.6399
±0.0128

0.6721
±0.0663

0.3632
±0.0929

0.5308
±0.0645

0.0690
±0.0012

0.9493
±0.0033

 

 ACC 0.6441
±0.0134

0.4363
±0.0009

0.5103
±0.0073

0.3705
±0.0230

0.5821
±0.0420

0.6574
±0.0347

0.6219
±0.0047

0.7445
±0.0110

0.7484
±0.0389

0.5404
±0.0621

0.6579
±0.0532

0.4796
±0.0017

0.9276
±0.0070

 

 
Occupancy Detection

NMI 0.4890
±0.0001

0.4720
±0.0003

0.4710
±0.0002

0.0539
±0.0007

0.5389
±0.0002

0.6297
±0.0054

0.5886
±0.0042

0.6250
±0.0042

0.6305
±0.0053

0.7340
±0.0072

0.7087
±0.0068

0.7951
±0.0048

0.6987
±0.0065

 

 ARI 0.5959
±0.0001

0.5699
±0.0004

0.5670
±0.0002

0.0209
±0.0002

0.6750
±0.0002

0.7479
±0.0053

0.6968
±0.0040

0.7365
±0.0041

0.7487
±0.0052

0.8548
±0.0050

0.8369
±0.0049

0.8698
±0.0042

0.8140
±0.0055

 

 ACC 0.8912
±0.0000

0.8825
±0.0001

0.8815
±0.0001

0.5772
±0.0004

0.9163
±0.0001

0.9366
±0.0015

0.9218
±0.0012

0.9332
±0.0012

0.9368
±0.0015

0.9656
±0.0012

0.9612
±0.0012

0.9686
±0.0011

0.9547
±0.0015

 

 (continued on next page)
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Table 4 (continued).
 
Machine Failure

NMI 0.0248
±0.0000

0.0281
±0.0000

0.0310
±0.0000

0.0284
±0.0003

0.5825
±0.1869

0.0785
±0.0281

0.0697
±0.0176

0.0992
±0.0028

0.8975
±0.0513

0.0172
±0.0.0034

0.0005
±0.0004

0.5079
±0.0415

0.9680
±0.0055

 

 ARI −0.0116
±0.0000

−0.0083
±0.0000

−0.0052
±0.0000

0.0007
±0.0001

0.6506
±0.1987

0.0515
±0.0128

0.0378
±0.0077

0.0613
±0.0018

0.9482
±0.0290

0.0654
±0.0100

0.0050
±0.0021

0.5882
±0.0497

0.9879
±0.0025

 

 ACC 0.5673
±0.0000

0.5418
±0.0002

0.5202
±0.0001

0.5146
±0.0007

0.9863
±0.0068

0.7003
±0.0165

0.6599
±0.0102

0.7015
±0.0032

0.9974
±0.0015

0.8683
±0.0113

0.7149
±0.0117

0.9836
±0.0015

0.9994
±0.0001

 

 
Pulsar Cleaned

NMI 0.0311
±0.0002

0.0167
±0.0000

0.0201
±0.0000

0.0236 
±0.0011

0.0544
±0.0001

0.0057
±0.0007

0.0551
±0.0032

0.0641
±0.0031

0.0961
±0.0040

0.0299
±0.0014

0.0363
±0.0156

0.0883
±0.0054

0.1720
±0.0150

 

 ARI 0.0370
±0.0003

0.0069
±0.0000

0.0131
±0.0001

−0.0011
±0.0002

0.1082
±0.0002

0.0155
±0.0011

0.0468
±0.0017

0.0588
±0.0014

0.1297
±0.0048

0.0911
±0.0034

0.1039
±0.0364

0.1087
±0.0065

0.2545
±0.0289

 

 ACC 0.7329
±0.0008

0.5714
±0.0001

0.6171
±0.0004

0.5019
±0.0012

0.8834
±0.0002

0.7291
±0.0029

0.7285
±0.0028

0.7559
±0.0019

0.8641
±0.0039

0.9140
±0.0026

0.9143
±0.0225

0.8397
±0.0065

0.9267
±0.0109

 

 
Bert-Embedded Spam

NMI 0.1517
±0.0001

0.1249
±0.0000

0.0472
±0.0374

0.1122
±0.0023

0.6704
±0.0000

0.6105
±0.0099

0.3480
±0.0084

0.4333
±0.0074

0.6103
±0.0101

0.2604
±0.0129

0.4053
±0.0063

0.3603
±0.0091

0.7057
±0.0115

 

 ARI 0.0830
±0.0003

0.0550
±0.0000

0.0289
±0.0265

−0.0026
±0.0007

0.8216
±0.0000

0.7263
±0.0110

0.3599
±0.0118

0.4935
±0.0100

0.7262
±0.0112

0.2887
±0.0133

0.4516
±0.0101

0.4217
±0.0109

0.8281
±0.0103

 

 ACC 0.6453
±0.0002

0.6174
±0.0000

0.5837
±0.0390

0.5482
±0.0012

0.9664
±0.0000

0.9426
±0.0028

0.8195
±0.0053

0.8731
±0.0035

0.9426
±0.0028

0.7888
±0.0065

0.8576
±0.0039

0.8477
±0.0043

0.9665
±0.0022
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Fig. 5. NMI of SSEKM with different 𝛼 values on the four artificial datasets. The blue curve is the NMI of SSEKM, and the red curve is the NMI of EKM as a reference.
Fig. 6. NMI of SSEKM with different 𝜃 values on four real imbalanced datasets. The blue curve is the NMI of SSEKM, and the red curve is the NMI of EKM as a reference.
Fig. 7. NMI of SSEKM with different ratios of labeled instances on four real imbalanced datasets. The blue curve is the NMI of SSEKM, and the red curve is the NMI of EKM as 
a reference.
4.5.3. Impact of the ratio of labeled instances
The impact of the ratio of labeled instances on the performance 

of SSEKM was examined. Fig.  7 displays the NMI score as a function 
of this ratio. For some datasets, such as Anuran Calls and Machine 
Failure, even a small amount of labeled data significantly enhanced 
the performance of SSEKM. For other datasets, such as Glass, a small 
amount of labeled data yielded only limited improvement. Nonetheless, 
a consistent trend was observed: the performance of SSEKM improved 
as the number of labeled instances increased, as anticipated.

4.6. Robustness against noise

We evaluated the robustness of SSEKM against the presence of noise. 
We assumed that noise data were uniformly distributed in the feature 
space, with their boundaries defined by the farthest clean data points. 
We defined the noise ratio as the ratio of the number of noise samples to 
the clean data. Fig.  8 shows the NMI score of SSEKM as a function of the 
noise ratio. As observed, the proposed SSEKM is highly robust against 
uniformly distributed noise data, as the NMI score is maintained even 
when the noise ratio increases up to 50%. This is primarily attributed 
to the equilibrium mechanism inherited from EKM. The final clusters 
are formed in the equilibrium state, where the attractive and repulsive 
forces are offset. The equilibrium state is highly stationary, making 
SSEKM less sensitive to noise.

4.7. Empirical convergence and algorithm efficiency

Table  5 presents the average number of iterations and the average 
time per run required for the algorithms tested in this study, with 
each algorithm executed 5000 times. The numbers in brackets indicate 
the ranking of the corresponding algorithms. AVK and MDK denote 
12 
the average and median number of iterations and computational time 
across all test datasets, respectively.

As evident from the table, SSEKM ranks among the fastest algo-
rithms. In terms of AVK, the four fastest algorithms are HKM, SFC-ER, 
SSFCMk24, and SSEKM. As expected, HKM is the fastest, as it is a hard 
clustering algorithm that does not involve membership calculations. 
The speeds of the other three fuzzy clustering algorithms are com-
parable. SSEKM is slower than SFC-ER and SSFCM by 11% and 2%, 
respectively; however, it is 760% faster than FWSSPCM. Therefore, 
SSEKM proves to be a highly efficient algorithm. Additionally, for 17 
out of 20 datasets, SSEKM requires fewer iterations than EKM to con-
verge, aligning with our theoretical analysis (refer to our convergence 
analysis, Section 3.4). Consequently, SSEKM is faster than EKM.

5. Conclusion

This study investigated the clustering of imbalanced data by in-
tegrating supervision knowledge into an EKM, an unsupervised fuzzy 
clustering technique. The proposed method, termed SSEKM, was shown 
to exhibit enhanced clustering efficacy, higher robustness to parameter 
variations, and lower computational costs. Theoretical analyses eluci-
dated the impact of supervision knowledge on model performance and 
confirmed the convergence of SSEKM. Comprehensive experiments on 
both synthetic and real-world datasets revealed that SSEKM surpassed 
SOTA methods, particularly on imbalanced datasets. SSEKM is also 
notable for its simplicity and high efficiency, achieving convergence 
more rapidly than many leading SSFC algorithms. SSEKM introduces a 
novel clustering strategy applicable in fields such as medical diagnosis 
and fraud detection, where imbalanced data frequently occurs. The 
limitation of this study is that it relies on the assumption of a binary 
prior matrix, which is not optimal for SSEKM. Future research may 
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Fig. 8. NMI of SSEKM with different noise ratios on the four artificial imbalanced datasets.
Table 5
Average number of iterations and average calculation time of each algorithm.
 Dataset Measurement HKM FCM MEFC PFCM EKM eSFCM SSFCMP97 SSFCMK24 SFC-ER SSPCM SPFCM FWSSPCM SSEKM  
 
Data-A

Iter 17.3 13.7 29.0 33.5 12.1 14.9 13.5 20.1 15.2 27.7 24.9 8.1 5.8  
 Time 0.005(1) 0.008(6) 0.013(9) 0.033(12) 0.007(2) 0.011(8) 0.008(5) 0.011(7) 0.008(4) 0.020(10) 0.032(11) 0.036(13) 0.008(3)  
 
Data-B

Iter 9.2 13.2 30.1 28.8 17.5 16.0 14.1 13.7 15.7 40.4 24.3 4.5 5.4  
 Time 0.003(1) 0.008(3) 0.013(9) 0.031(12) 0.009(7) 0.012(8) 0.008(5) 0.008(6) 0.009(4) 0.022(10) 0.031(13) 0.024(11) 0.007(2)  
 
Data-C

Iter 16.3 17.6 36.0 23.9 23.5 26.6 18.3 40.1 26.3 34.4 47.2 9.2 4.6  
 Time 0.008(1) 0.014(4) 0.023(8) 0.048(11) 0.017(6) 0.021(7) 0.013(3) 0.025(9) 0.017(5) 0.034(10) 0.076(13) 0.060(12) 0.008(2)  
 
Data-D

Iter 14.8 23.6 25.4 39.8 15.4 24.8 56.4 18.3 25.2 35.9 32.2 4.0 4.7  
 Time 0.033(1) 0.091(6) 0.082(5) 0.364(12) 0.107(7) 0.180(9) 0.246(11) 0.080(4) 0.068(3) 0.237(10) 0.367(13) 0.143(8) 0.047(2)  
 
IS

Iter 15.9 40.1 20.9 53.0 24.1 20.5 23.2 8.8 25.7 22.0 16.6 9.5 8.1  
 Time 0.021(2) 0.110(9) 0.058(7) 0.218(12) 0.074(8) 0.057(6) 0.045(5) 0.021(1) 0.036(4) 0.158(11) 0.146(10) 0.792(13) 0.030(3)  
 
Seeds

Iter 8.5 10.4 11.1 13.3 12.0 12.6 13.5 8.5 13.2 12.1 8.5 5.2 5.3  
 Time 0.001(1) 0.001(5) 0.001(2) 0.003(7) 0.002(6) 0.004(8) 0.004(10) 0.001(4) 0.004(11) 0.004(9) 0.004(2) 0.011(13) 0.001(3)  
 
Heart Disease Iter 9.9 269.3 12.5 22.7 18.7 11.9 16.3 8.7 12.4 9.4 8.2 7.9 4.9  

 Time 0.002(1) 0.074(10) 0.003(2) 0.081(13) 0.005(5) 0.005(6) 0.006(8) 0.005(4) 0.006(7) 0.074(11) 0.075(12) 0.066(9) 0.004(3)  
 
Wine

Iter 7.0 13.5 10.6 25.3 11.7 9.9 12.7 7.5 10.3 11.3 7.9 4.9 7.3  
 Time 0.000(1) 0.002(6) 0.001(2) 0.004(10) 0.001(4) 0.002(7) 0.003(8) 0.001(3) 0.003(9) 0.005(12) 0.005(11) 0.015(13) 0.001(5)  
 
Rice

Iter 8.4 8.7 8.9 12.7 9.1 7.6 8.9 7.9 7.5 13.2 8.6 5.2 3.5  
 Time 0.004(1) 0.009(9) 0.006(2) 0.021(12) 0.009(8) 0.008(7) 0.008(6) 0.007(5) 0.007(4) 0.017(10) 0.020(11) 0.091(13) 0.007(3)  
 
WDBC

Iter 7.4 10.8 10.6 32.4 9.9 7.8 13.1 7.9 8.0 14.1 10.7 5.8 4.6  
 Time 0.001(1) 0.003(4) 0.002(2) 0.009(12) 0.002(3) 0.005(9) 0.005(5) 0.005(8) 0.005(7) 0.008(11) 0.007(10) 0.067(13) 0.005(6)  
 
Zoo

Iter 4.4 31.0 23.8 35.0 498.9 19.3 40.2 10.2 19.1 23.6 25.4 3.0 499.7  
 Time 0.001(1) 0.005(4) 0.003(2) 0.009(8) 0.069(12) 0.006(6) 0.008(7) 0.005(3) 0.006(5) 0.011(10) 0.011(9) 0.016(11) 0.071(13) 
 
Glass

Iter 8.5 27.2 29.4 18.8 25.3 22.1 45.8 16.3 22.5 13.5 16.1 5.1 499.8  
 Time 0.001(1) 0.006(6) 0.006(3) 0.009(9) 0.006(5) 0.008(7) 0.009(8) 0.005(2) 0.006(4) 0.010(10) 0.011(11) 0.023(12) 0.100(13) 
 
Ecoli

Iter 14.1 42.9 23.6 32.2 22.9 25.6 38.3 18.5 24.2 32.3 23.2 3.3 500  
 Time 0.002(1) 0.019(8) 0.010(4) 0.029(12) 0.011(5) 0.014(7) 0.013(6) 0.008(3) 0.007(2) 0.027(10) 0.028(11) 0.026(9) 0.223(13) 
 
Htru2

Iter 12.7 33.8 15.2 21.5 10.8 38.4 28.2 15.2 24.1 11.7 14.3 10.2 3.7  
 Time 0.046(2) 0.175(9) 0.067(4) 0.357(12) 0.059(3) 0.163(7) 0.163(8) 0.093(5) 0.103(6) 0.319(11) 0.293(10) 0.849(13) 0.031(1)  
 
Shill Bidding Iter 12.0 15.0 24.3 22.7 22.3 14.0 22.2 22.9 15.0 24.2 21.1 8.0 4.3  

 Time 0.011(1) 0.026(5) 0.029(7) 0.064(11) 0.033(9) 0.019(4) 0.028(6) 0.029(8) 0.018(3) 0.062(10) 0.067(12) 0.273(13) 0.012(2)  
 
Anuran Calls Iter 22.5 35.7 24.1 39.3 44.3 25.0 45.0 23.3 24.4 28.9 29.4 8.1 14.4  

 Time 0.339(2) 0.527(7) 0.377(5) 1.502(11) 0.719(9) 0.431(6) 0.669(8) 0.366(3) 0.369(4) 2.967(12) 1.275(10) 3.913(13) 0.270(1)  
 Occupancy 
Detection

Iter 11.5 25.6 28.6 24.6 14.8 10.8 23.8 10.6 10.8 29.5 12.5 5.7 3.2  
 Time 0.032(2) 0.132(9) 0.097(7) 0.291(11) 0.067(6) 0.048(4) 0.097(8) 0.049(5) 0.041(3) 0.331(12) 0.219(10) 0.386(13) 0.025(1)  
 
Machine Failure Iter 13.4 22.0 11.9 127.4 22.5 10.2 23.1 25.5 10.5 22.7 31.2 4.6 3.5  

 Time 0.015(2) 0.055(9) 0.022(5) 0.442(13) 0.049(8) 0.022(4) 0.040(6) 0.044(7) 0.019(3) 0.100(10) 0.151(11) 0.211(12) 0.014(1)  
 
Pulsar Cleaned Iter 25.3 17.1 18.4 60.7 21.4 18.5 17.2 30.6 17.0 15.0 25.1 9.1 8.2  

 Time 0.045(2) 0.068(7) 0.052(4) 0.435(12) 0.075(8) 0.056(5) 0.064(6) 0.107(9) 0.047(3) 0.170(10) 0.223(11) 0.564(13) 0.038(1)  
 Bert-Embedded 
Spam

Iter 31.6 500.0 498.7 21.2 41.6 20.9 26.2 12.6 21.0 11.8 14.6 13.7 4.4  
 Time 0.015(3) 0.618(10) 0.388(9) 0.642(13) 0.045(7) 0.020(5) 0.021(6) 0.012(2) 0.017(4) 0.619(11) 0.633(12) 0.215(8) 0.009(1)  
 
AVK

Iter 13.5 58.5 44.7 34.4 44.0 17.9 25.0 16.4 17.4 21.7 20.1 6.8 79.8  
 Time 0.029(1) 0.098(9) 0.063(6) 0.230(11) 0.066(7) 0.055(5) 0.073(8) 0.044(3) 0.040(2) 0.260(12) 0.184(10) 0.389(13) 0.045(4)  
 
MDK

Iter 12.4 22.8 23.7 27.1 20.0 17.3 22.7 14.5 16.4 22.4 18.9 5.8 5.1  
 Time 0.007(1) 0.023(8) 0.018(7) 0.056(11) 0.025(9) 0.016(6) 0.013(5) 0.012(2) 0.012(3) 0.0482(10) 0.071(12) 0.079(13) 0.013(4)  
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explore the construction of more appropriate prior matrices to leverage 
partial supervision more efficiently.
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