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Abstract—Sparse component analysis (SCA) is a popular un-
derdetermined blind speech separation (UBSS) method. It models
all sources to have an identical distribution. As speeches do
not have identical distribution, SCA performs suboptimal. Some
studies have improved the performance of SCA by weighting the
sources through a reweighting scheme. However, they are not
UBSS methods because they assume that the mixing process is
known. This paper proposes a novel weighting scheme, called
sparse spatial component analysis (SSCA) without the need to
know the mixing process. In SSCA, weights, sources, and the
parameters for modeling the mixing process are jointly optimized,
making it a UBSS method. Simulation experiments show that for
instantaneous mixtures, SSCA outperforms SCA and reweighted
SCA, improving the source-to-distortion ratio (SDR) by 4 dB and
reducing the computational time by 40%. Further, experiments
using real-world recordings reveal that SSCA outperforms multi-
channel non-negative matrix factorization and full-rank covari-
ance analysis (FCA) in terms of SDR. The speed of SSCA is
200% faster than FCA.

Index Terms—blind source separation, underdetermined linear
system, sparse component analysis, weighted l1 minimization.

I. INTRODUCTION

UNDERTERMINED blind speech separation (UBSS)
aims to separate speech sources from their mixtures

where the number of sources exceeds the number of micro-
phones and the mixing process is unknown. Sparse component
analysis (SCA) [1]–[6], multichannel non-negative matrix fac-
torization (MNMF) [7]–[11], and full-rank spatial covariance
analysis (FCA) [12]–[14] are mainstream UBSS methods.

MNMF and FCA have problems with inconsistency be-
tween the assumed and actual distribution. Speech sources
and spatial images (i.e., the contribution of sources to mixture
channels) are assumed to be Gaussian distributed in MNMF
and FCA, respectively. However, the actual distribution of
speech in the time-frequency (TF) domain is non-Gaussian,
more closely resembling a Laplace distribution assumed in
SCA [15]. Hence, the performances of MNMF and FCA are
suboptimal. On the other hand, SCA is limited by its assump-
tion, made for mathematical convenience, that the sources are
identically distributed which ignores the unique patterns that
speech exhibits in the TF domain [15]. Several studies [16]–
[18] addressed this issue and formulated reweighted SCA
(RWSCA) by adopting Cande’s reweighting scheme [19] to
weight sources and thereby improved the performance of
SCA. However, these methods are not UBSS methods because
they assume that the mixing process is known. In summary,
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weighted SCA has a more appropriate speech model than the
current mainstream analytic UBSS methods, but due to the
lack of innovation in the weighting scheme, few weighted SCA
methods have been proposed as qualified UBSS methods.

In this paper, we propose a weighted SCA, called sparse
spatial component analysis (SSCA), with a novel weighting
scheme to solve UBSS without knowing the mixing process.
We note that the strong sparsity (i.e., disjointness) of speech
in the TF domain greatly facilitates the construction of ef-
fective weights by simply projecting the signals received by
the microphone array onto the microphone gains related to
source directions. We formulate two weighted l1 minimiza-
tion algorithms to estimate sources from the instantaneous
and convolutive mixtures. For the convolutive algorithm, the
weights, sources, and the parameters used to model the mixing
process are jointly optimized in each iteration. Therefore,
SSCA does not require extra methods to solve the complex
mixing process estimation problem; instead, UBSS is solved
in a single optimization framework. Simulation experiments
reveal that for instantaneous mixtures, SSCA outperforms
SCA and reweighted SCA, enhancing the source-to-distortion
ratio (SDR) by 4 dB and reducing computational time by up to
40%. Experiments using real-world recordings from a public
dataset demonstrate that the proposed SSCA outperforms
SCA [4], MNMF [7], [9], [10] and FCA [12] in terms of SDR.
In addition, the speed of SSCA is 200% faster than FCA.

The rest of the paper is organized as follows. In Section II,
we introduce SCA. Section III presents our proposed SSCA.
Simulated experiments validating the effectiveness of our
proposed method are described in Section IV. Finally, we
conclude in Section V.

II. SPARSE COMPONENT ANALYSIS

A. Mixing Models

We consider two mixing models. The first is the so-called
instantaneous mixing model which assumes a linear superpo-
sition of source signals, i.e.,

X = AS, (1)

where X is an M×T matrix containing mixed signals xm(t),
with m = 1, · · · ,M and t = 1 · · · , T , M being the number
of microphones and T being the number of signal samples. S
is an N × T matrix composed of source signals sn(t), with
n = 1, · · · , N , N being the number of sources. The number of
microphones is less than the number of sources, i.e., M < N ,
under the underdetermined condition. The mixing matrix A =
[aij ] ∈ RM×N contains real-valued microphone gains and is



assumed to be unknown in UBSS tasks. The instantaneous
mixing model is applicable in anechoic environments where
arrival delays among microphones can be neglected [20].

When arrival delays and reverberation are significant, a
more realistic convolutive mixing model is introduced. This
model can be simplified by narrowband approximation, which
assumes instantaneous mixing in each frequency band [21]:

Xf = AfSf , (2)

where Xf is an M ×Q complex matrix containing the short-
time Fourier transform (STFT) coefficients {xm(q, f)} of
mixed signals at the frequency band f , with q = 1, · · · , Q and
f = 1, · · · , F , Q being the total number of time frames and
F being the total number of frequency bands. Similarly, Sf

is an N ×Q complex matrix composed of STFT coefficients
{sn(q, f)} of source signals. The complex-valued mixing ma-
trix Af ∈ CM×N contains frequency-wise mixing parameters
related to the direction of arrival of sources. After estimating
Sf , the time domain source signals S can be obtained via
inverse STFT.

Following previous works, we make the following assump-
tions of A. For the instantaneous mixing model, we assume
A can be estimated by another method. Thus, when S is
estimated (by a method introduced in Section II-B), A is
fixed. For the convolutive mixing model, A and S are jointly
estimated (by a method introduced in Section II-C), that is,
A is not fixed but alternatively optimized along with S. Our
contribution works with both approaches.

B. Two-step SCA
When the instantaneous mixing model is considered, SCA

is usually achieved in two steps [1], [2]. The first step is to
estimate the mixing matrix A. The second step is to estimate
source signals using the estimated mixing matrix. Under the
underdetermined condition, the second step cannot be trivially
accomplished by simple inversion. SCA reconstructs sources
by maximizing posterior probability. It is often assumed that
the prior distribution of the phase of the STFT coefficients
of sources is uniform and the magnitude is independently
Laplacian distributed with zero mean and unit variance, i.e.,

p(|sn(q, f)|) =
1

2
exp(−|sn(q, f)|), ∀(q, f). (3)

Accordingly, maximizing the posterior of sources results in an
equality-constrained l1 minimization problem

min
S

∥SΨ∥1

s.t. X = AS,
(4)

where Ψ ∈ CT×QF is the STFT matrix, and ∥ · ∥1 is the l1
norm, defined as the entry-wise absolute sum. This problem
has been solved in [16].

C. Iterative two-step SCA
When the convolutive mixing model is applied, following

the state-of-the-art works of SCA [4], we optimize Af and Xf

jointly in each iteration, with the following objective function

min
Af ,Sf

1

2
∥Xf −AfSf∥2F + λ∥Sf∥1 + ιC(Af ), (5)

where ∥ · ∥F denotes the Frobenius norm, λ is a trade-off
parameter to balance the sparse regularization and the data
fidelity. The term ιC(Af ) is used to ensure that each column
of Af has unit magnitude, with the following expression

ιC(Af ) =

{
0, if ∥af,n∥2 = 1, n = 1, 2, · · · , N
+∞, otherwise,

(6)

where af,n is the n-th column of Af . The problem (5) has
been solved in [4].

III. THE PROPOSED METHOD

A. Source Estimation by Weighted l1 Minimization

The primary limitation of SCA is that it models all sources
using the same distributions. In the proposed SSCA, we model
sources using a family of Laplace distributions with zero
means and variances varying over time and frequency, i.e.,

p(|sn(q, f)|) =
wn(q, f)

2
exp(−wn(q, f)|sn(q, f)|) (7)

where wn(q, f) > 0 is a parameter/weight controlling the vari-
ance (the smaller wn(q, f), the larger the variance). Adopting
this prior distribution, the optimization problem (4) is modified
as

min
S

∥SΨ∥W,1

s.t. X = AS,
(8)

where W = [wn(q, f)] ∈ RN×QF
+ is the weight matrix

containing positive weight values, and ∥·∥W,1 is the weighted
l1 norm, defined as the weighted absolute sum (i.e., for
any matrix Z, ∥Z∥W,1 =

∑
i,j wij |zij |). The optimization

problem (5) is modified as

min
Af ,Sf

1

2
∥Xf −AfSf∥2F + λ∥Sf∥Wf ,1 + ιC(Af ), (9)

where Wf ∈ RN×Q
+ is the weight matrix for the frequency

band f .

B. Weight Construction

An appropriate W depends on the value of |sn(q, f)|. Two
observations inspire a simple method to estimate |sn(q, f)|.
The first observation is that the mixing model (2) can be
reformulated as a vector sum

x(q, f) =
∑
n

af,nsn(q, f), (10)

where x(q, f) = [x1(q, f), · · · , xM (q, f)]T is a vector com-
prising M STFT coefficients of the mixed signals at TF
point (q, f). It can be seen from (10) that x(q, f) is a linear
combination of column vectors of the mixing matrix Af .
The second observation is that most TF points are nearly
contributed by a single source, a nature of speech called W-
disjoint orthogonality, which was defined early [22] and re-
utilized recently [23]. Combining these two observations, a
relevant estimation of |sn(q, f)| can be obtained by projecting
x(q, f) onto the column vector af,n, i.e.,

ĉn(q, f) = |xT (q, f)an|/(aTnan), (11)



where ĉn(q, f) denotes an estimate of |sn(q, f)| and we omit
the frequency index of af,n for the sake of brevity. When
the W-disjoint orthogonality holds well, such an estimator
is accurate as explained below. When only the n1-th source
contributes energy at a TF point, ĉn1

(q, f) is exactly equiv-
alent to |sn1

(q, f)| and greater than the estimates of other
sources, i.e., ĉn1

(q, f) > ĉn2
(q, f), ∀n2 ̸= n1. The estimator

ĉn(q, f) remains robust when W-disjoint orthogonality does
not strictly hold. If two sources contribute energy (say the
n1-th source and the n2-th source) and ∥an1

∥2 = ∥an2
∥2,

ĉn1
(q, f) ≥ ĉn2

(q, f) if |sn1
(q, f)| ≥ |sn2

(q, f)|.
Assuming |sn(q, f)| follows the distribution (7), the maxi-

mum likelihood estimator (MLE) of wn(q, f) is 1/|sn(q, f)|.
Compute the weight according to the MLE formula and get
wn(q, f) = 1/(ĉn(q, f) + σ), where σ is introduced to avoid
infinite weight in the case of ĉn(q, f) = 0. However, we found
that such weight did not exhibit stable performance in practice,
potentially due to a suboptimal choice of σ. To circumvent
tedious tuning of σ, we propose to set wn(q, f) proportional
to the sine of the angle between x(q, f) and an:

wn(q, f) = ∥an∥2

√
1−

(
ĉn(q, f)∥an∥2
∥x(q, f)∥2

)2

= ∥an∥2

√
1−

(
|xT (q, f)an|

∥an∥2∥x(q, f)∥2

)2

,

(12)

where we multiply the sine with ∥an∥2 to remove the contri-
bution of the magnitude of an to the weight.

C. Optimization
1) Two-step SSCA: Define f1(S) = ∥SΨ∥W,1, f2(S) = 0

if X = AS, and f2(S) = +∞, otherwise. The constrained
problem (8) can be reformulated as an unconstrained problem

min
S

f1(S) + f2(S), (13)

which can be directly solved by the Douglas-Rachford (DR)
algorithm [24]. The DR algorithm is presented in Algorithm 1.

Algorithm 1: The Douglas-Rachford Algorithm

Initialize: Z(0) ∈ RN×T and a thresholding parameter
γ > 0

k = 0;
repeat

S(k) = proxγf2(Z
(k));

Y(k) = proxγf1
(2S(k) − Z(k));

Z(k+1) = Z(k) +Y(k) − S(k);
k = k + 1;

until convergence;
return S(k)

In Algorithm 1, proxγfi
is called the proximal operator

associated with the function fi, defined as

proxγfi(Z) := argmin
U

fi(U) +
1

2γ
∥U− Z∥F . (14)

In our case, the proximal operator of f1 is given by

proxγf1
(Z) = proxγ∥·∥W,1

(ZΨ)ΨH , (15)

with an entry-wise soft-thresholding function

proxγ∥·∥W,1
(Z) = [

zij
|zij |

(|zij | − γwij)
+], (16)

where (·)+ = max(·, 0), and (·)H is the conjugate transpose.
The proximal operator of f2 is derived as in [25]:

proxγf2
(Z) = Z+AT (AAT )−1(X−AZ). (17)

2) Iterative two-step SSCA: To solve the problem (9),
we generalize the N-Regu algorithm [4] and present it in
Algorithm 2. When the weight matrix W is an all-ones matrix
where all elements are equal to one, our algorithm reduces to
the original N-Regu algorithm. The function PC(A) is given
by the column-wise normalization:

an =
an

∥an∥2
, n = 1, 2, · · · , N. (18)

The function W is to calculate the weight matrix with entries
defined by (12). Since A

(k)
f can not accurately estimate the

true Af in the early stage of iteration, we make W(k)

gradually approach the result of function W by using the factor
k/kmax where kmax is the maximum number of iterations.

Algorithm 2: The Weighted N-Regu Algorithm

Initialize: A(0)
f ∈ CM×N , S(0)

f ∈ CN×Q,
W

(0)
f ∈ RN×Q

+ , and a trade-off parameter
λ > 0

L(0) = ∥A(0)H

f A
(0)
f ∥2, k = 0;

repeat
V(k) = −A

(k)H

f (Xf −A
(k)
f S

(k)
f );

S
(k+1)
f = proxλ/L(k)∥·∥

W(k),1
(S

(k)
f − 1

L(k)V
(k));

A
(k+1)
f = PC(XfS

(k+1)H

f );

L(k+1) = ∥A(k+1)H

f A
(k+1)
f ∥2;

W
(k+1)
f = k

kmax
(W(Xf ,A

(k+1)
f )−W

(0)
f ) +W

(0)
f ;

k = k + 1;
until convergence;
return S(k)

IV. SIMULATION EXPERIMENTS

We conducted two experiments to evaluate the proposed
SSCA, implemented on Ubuntu 18.04.4 LTS operating sys-
tem with an Intel Core i9-9900K CPU @ 3.60GHz X 16
and 62.7GiB memory. The first experiment used instanta-
neous mixtures of clean speech signals from the dataset
of SiSEC2011 [26], which had a 16 KHz sampling rate
and included male and female voices, mainly in English.
Instantaneous mixtures were generated by mixing three to
six speech signals (3 ≤ N ≤ 6) into two-channel mixtures
(M = 2) using random mixing matrices. These matrices had
independent, identically distributed Gaussian entries with zero
mean and unit variance, which were then taken as absolute
values and normalized to ensure each entry was positive
and each column vector had a unit magnitude. The STFT
window length was set to 1024 samples (i.e., 64 ms) with



TABLE I
UBSS RESULTS ON INSTANTANEOUS MIXING MIXTURES (BOLD NUMBERS

INDICATE THE BEST PERFORMANCE AND THOSE NOT SIGNIFICANTLY
DIFFERENT FROM IT, PAIRED T-TEST AT THE 5% SIGNIFICANCE LEVEL)

Method # of sources SDR (dB) ESTOI PESQ Time (s)

SCA

3 9.78 0.72 2.29 21
4 4.38 0.57 1.93 35
5 0.25 0.45 1.63 52
6 -0.92 0.40 1.63 69

RWSCA [16]

3 8.96 0.69 2.12 43
4 3.32 0.53 1.69 75
5 -1.33 0.37 1.28 110
6 -2.60 0.33 1.18 140

SSCA (prop)

3 13.74 0.84 2.80 15
4 7.05 0.67 2.22 22
5 2.73 0.54 1.83 33
6 0.29 0.45 1.67 41

a 50% overlap rate. The mixing matrix A was estimated by
an existing method [27]. We compared the proposed SSCA
against plain SCA and RWSCA proposed in [16]. Since tested
methods are special cases of ours, we implemented them using
Algorithm 1. SSCA used a weight matrix calculated by (12),
the plain SCA used an all-ones matrix, and RWSCA used
a weight matrix determined by a reweighting scheme. The
parameter γ was set to 0.1 and the convergence condition
was set to ∥S(k) − S(k−1)∥F /∥S(k)∥F ≤ 0.01. Table I
displays the average values of SDR [28], extended short-time
objective intelligibility (ESTOI) [29], perceptual evaluation
of speech quality (PESQ) [30], and computation time over
ten mixtures. SSCA achieved the best performance (up to 4
dB SDR higher than SCA) and converged faster than SCA
(saving up to 40% of time). This is because weights in SSCA
helped the optimization algorithm identify active sources in
the early stage of iteration, reducing unnecessary optimization
of inactive sources.

In the second experiment, we used real-world recordings
from the SiSEC2011 dev1 package. By combining genders
and source directions, we obtained 32 two-channel mixtures
of three sources with ambient reverb times of 130 ms and
250 ms. We compared the performance of the proposed SSCA
optimized by Algorithm 2 with plain SCA [4] (a special case
of Algorithm 2 where the weight matrix is an all-ones matrix),
MNMF optimized by expectation maximization algorithm
(MNMF EM) [7], MNMF optimized by multiplicative update
algorithm (MNMF MU) [7], two state-of-the-art fast MNMF
(FastMNMF1 [9] and FastMNMF2 [10]), and FCA [12]. For
Algorithm 2, we set the parameter λ to 0.05, the maximum
number of iterations kmax to 5e3, and initialized the weight
matrix as an all-ones matrix, updating it every 100 itera-
tions for stabilization. We solved the frequency permutation
alignment problem using an existing method based on inter-
frequency correlation [31]. For MNMF algorithms, the number
of components per source was set to ten as suggested in [7].
Values of the rest of the parameters of benchmark methods are
default. For all algorithms, we set the STFT window length
to 2048 samples (i.e., 128 ms) with a 50% overlap rate. The
results are shown in Table II. The proposed SSCA achieved
the best SDR performance and was comparable to the best
benchmarks (FCA and MNMF EM) in ESTOI and PESQ
while being the fastest among them.

TABLE II
UBSS RESULTS ON REAL-RECORDING MIXTURES (BOLD NUMBERS

INDICATE THE BEST PERFORMANCE AND THOSE NOT SIGNIFICANTLY
DIFFERENT FROM IT, PAIRED T-TEST AT THE 5% SIGNIFICANCE LEVEL)

Method Reverb SDR (dB) ESTOI PESQ Time (s)

SCA [4] 130 ms 3.84 0.42 1.52 86
250 ms 2.87 0.37 1.44 -

MNMF MU [7] 130 ms 1.23 0.25 1.25 23
250 ms 0.86 0.25 1.34 -

MNMF EM [7] 130 ms 2.76 0.46 2.02 117
250 ms 0.88 0.41 1.76 -

FastMNMF1 [9] 130 ms 1.92 0.36 1.60 20
250 ms 1.30 0.33 1.59 -

FastMNMF2 [10] 130 ms 2.64 0.40 1.73 14
250 ms 1.80 0.37 1.68 -

FCA [12] 130 ms 3.50 0.49 2.03 229
250 ms 2.74 0.45 1.86 -

SSCA (prop) 130 ms 4.72 0.48 1.94 95
250 ms 3.47 0.42 1.84 -

MF-FCA [14] 130 ms 5.69 0.62 2.31 4971
250 ms 4.27 0.55 2.15 -

We added in Table II the performance of the state-of-
the-art multi-frame FCA (MF-FCA) [14] as a reference, but
it is important to note that this is not a fair comparison.
Because MF-FCA considers time correlation between frames
and adopts multi-frame input for collaborative inference while
SSCA is a single-frame model. However, SSCA reduced the
performance gap with MF-FCA to less than 1 dB in terms of
SDR, and its calculation time is only one-50th of MF-FCA’s.

V. CONCLUSION

In this paper, we have presented the novel sparse spa-
tial component analysis (SSCA) for underdetermined blind
speech separation (UBSS). The SSCA method optimizes the
weighting of the sources based on their directions making
it able to remove the identical source distribution require-
ment without prior knowledge of the mixing process. Fur-
thermore, our SSCA model assumes that the speech follows
non-identical Laplace distributions which is more appropriate
than the assumption of non-identical Gaussian distributions
adopted by the state-of-the-art analytic UBSS methods such
as multi-channel non-negative matrix factorization (MNMF)
and full-rank covariance analysis (FCA). The appropriateness
is supported by superior performance in simulated experiments
using instantaneous mixtures and real-world recordings. The
proposed method is a single-frame model that could potentially
be upgraded to a multi-frame model offering even better
performance than multi-frame FCA.
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