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Abstract—Most fuzzy clustering algorithms are based on the
well-known Bezdek’s fuzzy C-means (FCM). However, FCM fails
when the data is imbalanced (class sizes are highly unequal). This
issue arises because in FCM all data points have only attraction
to each cluster prototype (i.e., centroid), causing centroids to
be biased towards the large class with the most data points.
This paper proposes a novel equilibrium K-means (EKM) for
imbalanced data, where data points exert both attraction and
repulsion on centroids. The equilibrium between opposing forces
reduces the learning bias towards large clusters, leading to
more meaningful clusters on imbalanced data. Unlike FCM,
EKM explicitly models the relationship between membership and
centroid via equality constraints, avoiding the pitfalls of uniform
effect. We derive closed-form centroid update equations proven to
converge exponentially fast. Experiments are conducted on four
artificial and 16 real-world datasets. The results demonstrate that
EKM significantly outperforms 13 state-of-the-art methods on
imbalanced datasets while maintaining competitive performance
on balanced data. EKM achieves an average improvement of
0.22 in normalized mutual information, 0.31 in adjusted rand
index, and 0.21 in clustering accuracy over FCM on 10 real-world
imbalanced datasets, with comparable computational efficiency
in theory and practice.

Index Terms—K-means, fuzzy clustering, equilibrium cluster-
ing, imbalance learning, uniform effect

I. INTRODUCTION
A. Imbalanced Data and Fuzzy Clustering

Imbalanced data refers to the true underlying groups of data
having highly unequal sizes, which is common in datasets of
medical diagnosis, fraud detection, and anomaly detection.
Imbalanced data poses a challenge for learning algorithms
because these algorithms tend to be biased towards the ma-
jority group [1]. While there is a considerable amount of
research on supervised learning from imbalanced data [2]-[4],
unsupervised learning has not been as thoroughly explored,
because the task is more difficult. Methods like resampling
and boosting frequently used in supervised learning cannot be
applied in unsupervised learning due to the lack of labels.

Let us consider an important unsupervised learning task
that aims to partition data points into a specified number
of clusters based on their similarity. This task is primarily
accomplished through fuzzy clustering, a more modern and
general concept than traditional hard clustering. In hard clus-
tering, each data point can only belong to exactly one cluster,
while in fuzzy clustering, each data point can potentially
belong to multiple clusters. Membership values are assigned
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to data points, indicating their degree of belonging to each
cluster. Fuzzy C-means (FCM), proposed by Bezdek [5], is
one of the most widely used fuzzy clustering algorithms and
serves as a generalization of the K-means algorithm proposed
by Lloyd [6]. Many fuzzy clustering algorithms build upon
FCM, focusing on the management of regularization or penalty
terms to obtain expected membership values. For example,
Krishnapuram and Keller relaxed the FCM’s probabilistic
constraint that the sum of membership values of each data
point across clusters equals 1, proposing the possibilistic C-
means (PCM) [7], where the membership is interpreted as
a typicality. Subsequently, the possibilistic fuzzy C-means
(PFCM) [8] was proposed as a combination of FCM and PCM
to address the noise sensitivity defect of FCM and overcome
the coincident clusters problem of PCM. The cutset-type PCM
(C-PCM) [9] was proposed to address the coincident clusters
problem of PCM by shrinking membership/typicality values of
non-core data points to zero. Additionally, maximum-entropy
fuzzy clustering (MEFC) [10], [11] was developed to provide
a physical interpretation of membership by adding an entropy
regularization term. FCM-o [12] was proposed to improve
FCM’s performance on data points with uneven variations
or non-spherical shapes in individual clusters. The authors
in [13], [14] proposed to define a density-based member-
ship value, addressing the limitation of FCM that cannot
identify clusters with arbitrary shapes and densities. Fuzzy
local information K-means [15] was designed to promote
FCM’s performance in image segmentation. An improved
FCM clustering by varying the fuzziness parameter, called
vFCM [16], was proposed to overcome the issue of care-
fully tuning the fuzziness parameter of FCM. Lohit and
Kumar [17] proposed to use a modified picture fuzzy total
Bregman divergence as a similarity measure to enhance noise
robustness of FCM in magnetic resonance imaging (MRI)
segmentation. Bose et al. [18] introduced a fuzzy membership
function with Shannon’s entropy-based variation to deal with
the vagueness problem offered by mixed pixels in MRI.
Recently, feature-weighted PCM (FWPCM) [19], [20] was
proposed to give non-uniform importance to features. Research
of combining fuzzy clustering and kernel mechanisms [21]-
[23] has garnered interest, which non-linearly maps data from
a low-dimensional space to a high-dimensional space through
kernel functions to enhance data separability. Conversely, deep
clustering, a modern technique that integrates deep neural
networks (DNNs) and fuzzy clustering (or other clustering
methods), has been proposed to cluster high-dimensional data
by mapping them to a low-dimensional space where the curse
of dimensionality is not presented [24]-[27]. Alternatively, a
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Fig. 1. Clustering results of a highly imbalanced dataset. (a) Ground truth.
The colors represent the reference labels of the data points. (b) Clustering by
hard K-means [6]. (c) Clustering by fuzzy C-means [5]. (d) Clustering by the
proposed equilibrium K-means. Black crosses mark the positions of centroids
calculated by algorithms.

hierarchical method based on fuzzy logic was proposed to deal
with high-dimensional data [28].

B. Uniform Effect: The Problem of Fuzzy C-Means

The core idea of fuzzy clustering is to find prototypes, or
centroids, of clusters. All the aforementioned fuzzy clustering
algorithms calculate centroids in the same way - centroids are
weighted means of data points, where weights are membership
values or their exponents. Membership values, interpreted as
levels of belonging, are naturally non-negative and typically
positive in practice. A positive weight means that a data
point has an attraction to the centroid. However, when dealing
with imbalanced datasets where classes have highly unequal
sizes, this non-negativity imposes a problem for FCM. Larger
clusters with more data points exert a stronger attraction on the
centroids than smaller clusters, causing the centroids closer to
them. Ultimately, centroids fail to represent the true clusters,
leading to poor clustering results. This issue is known as the
uniform effect [29] and has been observed in FCM [30]. An
illustration of the uniform effect of Lloyd’s K-means (hereafter
referred to as hard K-means, HKM) and FCM is given in
Fig. 1, where we can observe that the centroids of HKM and
FCM crowd together in the large cluster.

C. Efforts to Overcome Uniform Effect and Their Limitations

There are currently two methods that attempt to overcome
the uniform effect. The first method is to scale the mem-
bership values according to cluster size. The bias towards
larger clusters is reduced by assigning greater weight to
data points in smaller clusters. Noordam et al. [31] and
Lin et al. [32] adopted this method, proposing a cluster-size

insensitive FCM (csiFCM) and a size-insensitive integrity-
based FCM (siibFCM), respectively. Liu et al. [33] proposed
an improved FCM (iFCM) that defines cluster size by the
summation of membership values. Pu et al. [34] enhanced
iFCM with edge modification (EM-iFCM) to address the issue
that iFCM incorrectly deals with samples on the cluster edge.
Priya et al. [35] introduced FKPCM_S_UB that combines a
plane-based clustering method and cluster-size insensitivity to
overcome the problem of imbalanced and non-spherical data
clustering.

Although the method of scaling membership values based
on cluster size is intuitive, it is too idealistic. First, scaling
requires the true cluster size to which the data points belong. In
unsupervised learning, accurately estimating cluster size is dif-
ficult. Second, even if the true cluster size is known, correctly
scaling is difficult because we do not know which cluster a data
point belongs to. Third, cluster sizes are estimated based on the
clustering result of the current iteration, but clustering varies
in each iteration, making the final performance unreliable. In
the worst case, part of the noise data is incorrectly treated as a
separate cluster. Studies have reported that both csiFCM and
siibFCM are sensitive to noise and outliers [36].

The second method is called multiprototype clustering. This
method first groups data into multiple subclusters of similar
sizes, and the final clusters are obtained by merging adjacent
subclusters. Liu et al. [37] proposed a novel fuzzy cluster-
ing validity index, called IMI2, that merges some clusters
based on their separation value. Li et al. [38] proposed an
adaptive tuning strategy to automatically select the number
of multiprototypes and merge them using a convex optimiza-
tion technique. Liang et al. [39] proposed a multiprototype
clustering algorithm that employs an FCM algorithm robust
to centroid initialization to generate subclusters. Later, Lu
et al. [40] proposed a self-adaptive multiprototype clustering
algorithm that automatically adjusts the number of subclusters.
However, multiprototype clustering algorithms have a complex
process and high time complexity, up to O(N?) for [39] and
[40], where N is the number of data points in the dataset.
Thus, they are computationally expensive for large datasets.
We should additionally mention that Zeng et al. [41] recently
proposed a soft multiprototype clustering algorithm with time
complexity linear to N. However, their clustering process
remains complex and aims to cluster high-dimensional and
complex-structured data rather than imbalanced data.

In summary, existing methods to overcome the uniform
effect are limited and do not address the root cause. These
methods still compute centroids as non-negatively weighted
means of data points. Hence, the problem of uniform effect
will still arise for them. To the best of our knowledge,
no research fundamentally addresses the uniform effect in
FCM, nor is there a simple and effective fuzzy clustering
algorithm for imbalanced data. The main challenges lie in
(1) the implicit yet prevalent assumption of balanced data
distribution, thus conventional paradigms lose effectiveness for
imbalanced data distribution; (2) the underlying class distri-
butions are unknown; and (3) the self-reinforcing coupling
between membership and centroid drift amplification under
imbalance, where traditional regularization (e.g., entropy) fails



to decouple these inter-dependencies, causing the minority
cluster to be overlooked. These necessitate novel mechanisms
to disrupt the reinforcement loop and preserve natural cluster
separation while suppressing majority dominance.

D. Our Contributions

In this paper, we propose a novel fuzzy clustering method,
robust to imbalanced data as illustrated in Fig. 1d. The main
contribution of this work lies in proposing the equilibrium K-
means (EKM) algorithm, which fundamentally resolves the
long-standing challenge of fuzzy clustering on imbalanced
data by introducing a physics-inspired equilibrium mechanism.
Specifically, our contribution includes three key aspects.

Firstly, we formulate the proposed EKM algorithm. Unlike
the derivation of FCM, we do not treat membership and
centroid as two independent optimization variables, but ex-
plicitly express membership as a function of the centroid and
use it as an equality constraint to optimize the centroid. We
appropriately choose the functional form of membership and
construct a physically meaningful objective function. The cen-
troid update equations obtained from a quasi-Newton method
are as concise as those of FCM, but the weight can be negative.
This means that clustering is generated in an equilibrium state,
where each cluster exerts attractive and repulsive forces on
centroids, and opposing forces are balanced in the final state.
This equilibrium state directly counters majority dominance
and preserves minority clusters without ad hoc regularization.
The proposed EKM alternates between two simple steps and
maintains the same time and space complexity as FCM in each
iteration.

Secondly, a convergence condition of EKM is given based
on a fixed-point theorem. We prove that EKM can converge
exponentially fast with proper parameter selection. In addition,
we analyze the root cause of why EKM surpasses FCM on
imbalanced data.

Finally, a comprehensive study is conducted using four
synthetic and 16 real datasets (hence 20 datasets in total)
to demonstrate the effectiveness of EKM on balanced and
imbalanced data. The results show that EKM is competitive on
balanced datasets and significantly outperforms FCM and its
many representative variants on imbalanced datasets (paired
t-test and Wilcoxson signed-rank test with p < 0.05). We also
demonstrate the practical computational efficiency, robustness
to hyperparameters, and convergence of EKM.

E. Organization

We introduce FCM, and its representative variations, PCM
and MEFC, in Section II. The goal is to introduce the
traditional centroid update formula in FCM and explain its
limitations. In Section III, we describe the proposed EKM
algorithm and analyze its convergence and in which aspect it
surpasses FCM. We evaluate the performance of EKM on 20
datasets in Section IV. Finally, we conclude in Section V.

II. WHAT’S WRONG WITH Fuzzy C-MEANS
A. Fuzzy C-Means

We consider the commonly used Euclidean distance as a
similarity measure. FCM partitions N data objects into K

clusters by minimizing the sum of weighted distances between
data objects and centroids, with the following objective func-
tion and constraints:

N K
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where x,, represents the feature vector of n-th data object
(we call x,, the n-th data point for simplicity), c; denotes
the k-th centroid, wg,, is a coefficient called membership that
indicates the degree of x,, belonging to the k-th cluster, and
m € (1,400) is a hyperparameter controlling the degree of
fuzziness level. Approximate optimization of FCM’s objective
function based on the iteration through the necessary condi-
tions for its local extrema is formulated as [5]:

1) Calculate the membership value of the n-th data point

belonging to the k-th cluster:
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2) Recalculate the weighted centroid of the k-th cluster by:
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The time complexity of one iteration of the above two steps
is O(NK?). It is clear that the membership ug, in (2)
lies in [0,1]. In the limit of m — 1, the membership ugs,
converges to 0 or 1, and the objective of FCM coincides with
HKM, producing the same data partition. In the following, we
introduce two representative variations of FCM, which modify
FCM by adding some regularization or penalty terms.

B. Possibilistic C-Means

Krishnapuram and Keller [7] pro}[gosed relaxing the proba-
bilistic constraint in FCM, i.e., Zk:l urn, = 1, and derived
PCM. Compared to FCM, PCM assigns smaller membership
values to noise data, making it more suitable for noisy datasets.
PCM has the following objective function

N K
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n=1 k=1
s N “4)

+ Z Nk Z(l - ukn)m7
k=1 n

=1

min
C1, ,CK {Ukn

where {7} are suitable positive numbers. The second term
penalizes small ug,, to avoid all membership to 0. Approxi-
mate optimization of PCM’s objective function based on the
iteration through the necessary condition for its local extrema
is



1) Calculate the membership value of the n-th data point
belonging to the k-th cluster:
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2) Recalculate the weighted centroid of the k-th cluster by:
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It is obvious that ug,, in (5) is within the range of [0, 1].

C. Maximum-Entropy Fuzzy Clustering

Karayiannis [10] proposed MEFC in which an entropy term
was added to regularize membership, making the membership
physically meaningful. MEFC has the following objective
function

min
C1,,CK {Ukn }
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where 1 € (0, 1) is a hyperparameter, controlling the transition
from maximization of the entropy to the minimization of
centroid-data distances. Approximate optimization of MEFC’s
objective function based on iteration through the necessary
conditions for its local extrema is given by:
1) Calculate the membership value of the n-th data point
belonging to the k-th cluster:
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2) Recalculate the weighted centroid of the k-th cluster by:
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where \ = %1—7’7 and 1y, in (8) falls within [0, 1].
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D. Discussion

FCM, PCM, and MEFC calculate centroids in the same way:
centroids are weighted means of all data points, with weights
being membership values or their exponents. Such a formula
is also employed by most fuzzy clustering algorithms based
on FCM. Membership is non-negative by its definition and
positive in practice. Consequently, the centroids in FCM are
attracted by all data points and tend to be closer to larger
clusters with the most data points. This is the core reason
causing the uniform effect. The uniform effect is not specific
to FCM; it also occurs in PCM and MEFC. This problem is
not caused by a poor choice of regularization or penalty terms
for the membership; rather, it will arise for any multiplicative

objective function, which can be expressed as a multiplication
of membership and distance between data points and centroids,
with membership and centroid being independent optimization
variables. The necessary conditions for optimizing such an
objective function are the same as those in the theorems for the
FCM, resulting in the same centroid update formula. Since the
multiplicative objective function is the most intuitive objective
function, the uniform effect is prevalent in fuzzy clustering
methods.

III. EQUILIBRIUM K-MEANS
A. Objective Function

Considering the aforementioned limitations of FCM, herein,
we propose a novel fuzzy clustering framework that does
not follow the fashion of FCM. Specifically, we do not treat
membership and centroid as two independent optimization
variables. Instead, we explicitly express membership as a
function of centroids and use it as an equality constraint to
optimize centroids. Our proposed objective function is

53wk,

Imn

n=1 k=1 (10)
subject t0 Uk, = Ukn(c1, - ,CK) Yk, n,
where di,, = ||Xx, — cgl||2 is the Euclidean distance between

n-th data point and k-th centroid, and u,(-) is an arbitrary
real-valued function that turns a vector of K real values into
a real value lying in [0, 1]. We propose to define wuy,(-) as

exp(—adz,)
> exp(—ad?,)

where o € (0, +00) is a hyperparameter to control the scaling
of distance. The choice of o will be discussed later. Such a
definition has several benefits. First, the exponential function
is easy to differentiate, facilitating optimization. Second, u,
defined in (11) has non-negative value and Zszl Ukp = 1,
which qualify U = {ugn}rn, as a probabilistic partition
matrix. Third, the objective function in (10) has a physical
meaning that we will elaborate on in the following sections.

Ukn(C17"' 7CK): ) (11)

B. Optimization

Substitute the explicit form (11) of wug,, the equality-
constrained optimization problem (10) can be reformulated as
an unconstrained problem

N K
=3 upndi,, (12

n=1k=1

min
C1, ,CK

Jexm(c1, -, ¢

where readers should keep it in mind that uy,, is a function of
ci, -+ ,Cx. We apply the gradient descent method to optimize
the above problem. The objective Jgxm possesses the first-
order partial derivative of
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The minimizer of Jgky can be found using gradient descent
iteration

CI(CTJrl) = Cgr) ’YI(CT)aCk JEKM(CY)’ e 7C§;—))7 (15)
where *y,(;) is the learning rate at the 7-th iteration. We can

choose a fixed learning rate in each iteration, but it will not
provide insight into EKM’s effectiveness on imbalanced data.
We propose to set an adaptive learning rate via a quasi-Newton
method. The objective function Jgkm possesses the second-
order partial derivative given by

9% Jexm al
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where I is the identity matrix and Dy, = (x, — ¢c)(x, —

ck)T is a rank-1 matrix. Observing w;, o u;,, hence,
Ukn Zz;ﬁk Win X Ukn ngk Uin = uk,n(l - ukn)a which is
smaller than uy,, especially when clusters are well-separated.
Therefore, we can ignore the term of Dy, and approximate
the second-order partial derivative of Jggm by
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According to the iterative rule of Newton’s method, where the

Hessian matrix (16) is approximated by (17), the centroids of
EKM can be updated by
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Similar to FCM, EKM is a two-step iteration algorithm al-
ternating between weight calculation and centroid calculation.
For convenience, we summarise the complete procedure of
EKM in Algorithm 1. EKM converges when centroids cease
to change or the maximum number of iterations is reached.
The time complexity of one iteration of EKM is the same as
that of FCM, which is O(NK?). It is important to note that
although Zle Wkn, = 1, {wkn }r,»n cannot be interpreted as
membership because some values are negative.

Algorithm 1: Equilibrium K-Means Algorithm

Input: A dataset X = {x,,}»_;, cluster number K,
initial centroids {c,(co)}le, parameter «

Output: Centroids {cy,--- ,cx}

T=0;

repeat
Compute weight w(T) by (14) for all k, n;
Update centroid c(TH) by (18) for all k;
T=17+1;

until convergence;

(T K

return {c; ' },*,

C. Physical Interpretation

The second law of thermodynamics asserts that in a closed
system with constant external parameters (e.g., volume) and
fixed entropy, the internal energy will reach its minimum value
at the state of thermal equilibrium. The objective function (12)
of EKM follows this minimum energy principle. This connec-
tion can be established by envisioning data points as particles
with discrete/quantized energy levels, where the number of
energy levels is equivalent to the number of centroids, and the
energy value corresponds to the squared Euclidean distance
between a data point and a centroid. Boltzmann’s law states
that at the state of thermodynamic equilibrium, the probability
of a particle occupying a specific energy level decreases ex-
ponentially with the increase of the energy value of that level.
Hence, Jgxm equals the expectation of the entire system’s
energy, and EKM seeks centroids to minimize this energy
expectation.

D. Why EKM Surpassing FCM

The centroid update equations (18) of EKM are similar
to those (3) of FCM, as both are weighted means of data
points. The key difference is the weight calculation formula.
In FCM, the weight is the exponent of membership (i.e., u.,),
whereas in EKM, the weight is the membership multiplied by
a factor (i.e., up,dp, where dp, = 1 — afg, and Bg, =
din — Zf( 1 uind3,). The use of the exponent of membership
in FCM causes the uniform effect, but the situation changes in
EKM due to the factor d;,,. Note that 5., can be reformulated
as Brn = .4y Win(d},, —d3,). If the n-th data point is closest
to the k-th centroid, SBx, is negative, and dy,, will be greater
than 1, indicating that the n-th data point attracts the k-the
centroid. Conversely, if the n-th data point is furthest from
the k-th centroid, S, is positive. When [y, is positive and
« is sufficiently large, dy,, will be negative, indicating that
the n-th data point repulses the k-th centroid. In summary,
the clustering feature of EKM is that data points close to
a centroid will attract that centroid and repel other farther
centroids. Because of the offsetting between attraction and
repulsion, the learning bias towards large clusters is reduced
in EKM. This is why EKM surpasses FCM on imbalanced
data.

To better understand the distinction between EKM and
FCM, we provide a simple example on an x-axis to illustrate
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Fig. 2. Weight of the n-th data point to the second centroid as a function of
the data point moving along the x-axis. The blue and red crosses mark the
positions of the first and second centroids, respectively. The yellow curve is
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weights of FCM and EKM with different parameter values. (a) The weight
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how the weight of a data point in EKM and FCM changes
with its position. We fix the first centroid at —1 and the
second centroid at +1. Fig. 2a shows uj;, of FCM, and Fig. 2b
displays wg, = ug,dr, of EKM. We focus on the weight of a
data point on the second centroid. In addition, we only show
the weight of FCM. Other fuzzy clustering algorithms (such as
PCM and MEFC) produce similar results and do not alter the
conclusions. Therefore, they are omitted to save space. We can
see from Fig. 2a that in FCM, if a data point is positioned on
the side of the first centroid, its weight to the second centroid
is non-negative and generally positive. Therefore, if there are
enough data points on the side of the first centroid, the second
centroid will be attracted to that side!. In contrast, the weight
in EKM can be negative. Therefore, regardless of the number
of data points on the side of the first centroid, the second
centroid in EKM will be less deviated because of the offsetting
force.

E. Convergence Analysis

We give a convergence condition of EKM based on the
fixed-point theorem. It turns out that EKM can always con-
verge exponentially fast with arbitrary initial centroids as « is
sufficiently small or large.

Theorem 1 (Convergence Condition): The centroid sequence
obtained by (18) converges exponentially to a stationary point
{ci, -+, cl} of the objective function Jgxy (12) if a constant
0 < v <1 exists with
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Unless the membership is carefully scaled according to the true cluster

size, but we have discussed that such scaling is neither feasible nor reliable
in unsupervised learning.
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Proof: Define f(cp) = (ij:l wknxn)/(zgzl Wy ). Ob-
serve the gradient of Jgkym given in (13), it is clear that any
stationary point of Jgky is a fixed point of f and vice versa.
Hence, we have
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-1
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where f' denotes the first derivative of f, ||-||r is the Frobenius
norm, and & is a point on the line with cffl and cj as

endpoints. The inequality holds according to the median value
theorem. The function f has the first derivative of
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We discuss the value of M}, in two limiting cases (o — 0
and o — 400) to provide insight into the convergence prop-
erty of EKM. When o — 0, ug, — 1/K and wg, — 1/K
for all k£ and n, leading M}, to approach 0. This means that
convergence requires only one step. Hence, EKM can always
converge fast with arbitrary initial centroids as « is sufficiently
small. Of course, to avoid a trivial solution, v cannot be set
directly to zero. We will discuss the parameter tuning later.

In the case of well-separated data, where each cluster
has no overlap and the initial centroids are close to their
corresponding clusters, as @ — +o0o, we have qugy,|l —
Win| = ‘Zi;ﬁk QUugnUin(1 — aBin)] — 0. Consequently,
M — 0. This occurs because either ug, or u;,, one of
them approaches 0 and decays exponentially with «. In fact,
when @ — +o0o, EKM can always converge because the
centroid update equations of EKM converge to those of HKM,
which are known to converge to a (local) minimum or saddle
point [42].

F. The Choice of EKM’s parameter

In EKM, only one parameter o needs to be tuned. The
optimal choice of a remains unknown, a common issue in
unsupervised learning due to limited information. Similarly,
FCM struggles with selecting the optimal fuzzifier value, m.
Despite numerous studies discussing the selection of m, a
widely accepted solution has yet to be found [43].

Nonetheless, we can have a suitable range for a based on
the analysis above. On the one hand, the convergence of EKM
is always guaranteed when « is sufficiently small. On the



other hand, we aim for dy,, = 1 — a5, to be negative when
Brn 1s positive to introduce repulsion between data points
and centroids. Hence, o cannot be too small. Noting that
both (i, and M} involve a distance term, we can estimate
« from distance statistics such as variance of datasets. Such
estimation ensures that 3y, and M} maintain a certain measure
invariance, thus promoting both convergence and the presence
of repulsion.

The value of « can be fixed throughout all iterations or vary
in each iteration. If the iterations fail to converge, reducing «
may help; if the centroids are too close, increasing o might
be beneficial. In our experiments, we consistently use a fixed
« value for convenience. Both performance and convergence
are satisfactory and consistent with our analysis.

To ensure practicality across diverse scenarios, we propose
two strategies for selecting «, depending on the user’s prior
knowledge of the dataset. For datasets with known structural
characteristics, a predetermined « can be empirically chosen.
For instance, in our experiments on artificial datasets (Sec-
tion IV-B), we set @ = 0.5. This strategy is optimal when
users have domain expertise or validated default values for
similar data structures. For real-world datasets (Section IV-D
and Section IV-E) with unknown or complex distributions, we
dynamically compute « using the data variance according to
our analysis. Unlike tuning-based approaches, this eliminates
manual intervention and generalizes across unseen datasets.

IV. NUMERICAL EXPERIMENTS
A. Experimental Setup

Numerical experiments are conducted to compare the per-
formance of our proposed EKM algorithm with 13 state-of-
the-art hard and fuzzy clustering algorithms including (1)
HKM [6], (2) FCM [5], (3) PCM [7], (4) MEFC [10], (5)
PFCM [8], (6) csiFCM [31], (7) siibFCM [32], (8) C-PCM [9],
(9) FWPCM [19], (10) iFCM [33], (11) EM-iFCM [34], (12)
vFCM [16], and (13) IMI2 [37]. Multiprototype clustering
algorithms (e.g., [39], [40]) are not appropriate as baseline
algorithms because they are too complex to be benchmarks for
gauging the efficiency of EKM. We also avoid using hybrid
methods, such as algorithms combining K-means with kernels
proposed in [21]-[23], as benchmarks to ensure fairness. Im-
plementation is conducted in MATLAB R2022a, and the oper-
ating system is Ubuntu 18.04.1 LTS with Intel Core 19-9900K
CPU @ 3.60GHz X 16 and 62.7 GiB memory. All datasets
used and codes are available at https://github.com/ydcnanhe/
Imbalanced-Data-Clustering-using- Equilibrium-K-Means.git.

The experimental datasets contain four artificial datasets
generated by us (including Data-A, Data-B, Data-C, and Data-
D), 13 UCI [44] datasets (consisting of Image Segmentation
(IS), Seeds, Wine, Rice, Wisconsin Diagnostic Breast Cancer
(WDBC), Ecoli, Htru2, Zoo, Glass, Shill Bidding, Anuran
Calls, Occupancy Detection, Machine Failure), and three Kag-
gle datasets (incorporating Heart Disease, Pulsar Cleaned, and
Bert-Embedded Spam). So there are 20 datasets, and Table I
provides their information, including name, instance number,
feature number, reference class number, and coefficient of
variation (CV). CV is used in previous literature [45] to

TABLE I
DETAILED DESCRIPTION OF 20 DATASETS. THE LARGER THE CV VALUE,
THE MORE IMBALANCED THE DATASET

ID Name Instances  Feature  Classes CvV

D1 Data-A 2250 2 3 1.4468
D2 Data-B 2250 2 3 1.4468
D3 Data-C 5200 2 2 1.3054
D4 Data-D 5400 2 9 2.7500
D5 IS 2310 19 7 0

D6 Seeds 210 7 3 0

D7 Heart Disease 1125 13 2 0.0373
D8 Wine 178 13 3 0.1939
D9 Rice 3810 7 2 0.2042
D10 WDBC 569 30 3 0.3604
D11 Zoo 101 16 7 0.8937
D12 Glass 214 9 6 1.0767
D13 Ecoli 336 7 8 1.1604
D14 Htru2 17898 8 2 1.1552
D15 Shill Bidding 6321 9 2 1.1122
D16 Anuran Calls 7195 22 10 1.6016
D17  Occupancy Detection 20560 5 2 0.7608
DI8 Machine Failure 9815 7 2 1.3318
D19 Pulsar Cleaned 14987 7 2 1.3561
D20  Bert-Embedded Spam 5572 768 2 1.0350

measure the level of data dispersion. It is calculated as the ratio
of the standard deviation of class sizes to the mean. Given the
number of instances in each class as Ny, -+, Ng, we have

CV = s/N, (19)

where

N = ZkK=1 Ni 5 = Zszl(Nka)Q
K ’ K-—-1 '

In [45], a CV value exceeding 1 indicates highly varying
class sizes, while a value below 0.3 signifies uniform class
sizes. However, there isn’t a widely accepted critical CV value
implying that the data is imbalanced. For rigorous statements,
we establish that if a dataset’s CV is less than 0.4, it is
considered balanced. Conversely, if the CV exceeds 0.7, the
dataset is deemed imbalanced. Consequently, we have six
balanced datasets and 14 imbalanced datasets. It should be
noted that none of the datasets used has a CV value between
0.4 and 0.7, hence this range remains undefined.

All datasets undergo normalization, ensuring that each fea-
ture has zero mean and unit variance. All features are used
for clustering purposes. The number of clusters is set to the
reference class number”. Convergence is achieved when the
moving distance of centroids between successive iterations is
sufficiently small relative to the magnitude of centroids, i.e.,

1/2
(25;1 el - cEJ‘”n%)
1/2
(zi‘_l ||c5:>|5)

We set the maximum number of iterations to 500 to prevent
algorithms from infinitely iterating due to failure to converge.
Except for sporadic cases, all algorithms can reach the speci-
fied convergence within 500 iterations.

< le-3.

(20)

2When reference class numbers are unavailable, cluster validity indexes,
widely used to set the number of clusters when using FCM (e.g., BXI [46],
IMI [47], WLI [48]), are directly applicable to EKM due to analogous outputs
(centroids via (18) and membership via (11)).
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Centroids are initialized using the K-means++ algo-
rithm [49]. Given that each run of K-means++ yields different
outputs and the objectives of the tested clustering algorithms
are known to be non-convex (i.e., multiple local optima exist),
convergence may happen at one of the local optimal points.
A common way of finding the global optimum is to carry
out a number of replications followed by a selection of
the best (lowest) objective value. Hence, each trial includes
100 repetitions, and we select the repetition with the lowest
objective value as the final result for that trial. We average
the performance of 50 trials to ensure the rationality of the
experiment. This means we conduct 50 x 100 = 5000 runs
for each algorithm. 100 repetitions in each trial is still within
the practical executable range, and each trial can give almost
consistent results as indicated by a small standard deviation.
We utilize widely accepted measures of clustering performance
for our evaluation indexes, including the normalized mutual
information (NMI) [50], the adjusted rand index (ARI) [51],
and the clustering accuracy index (ACC) [52]. Both NMI and
ACC range from 0 to 1, with O indicating the worst and 1
representing the best. ARI has a range from -1 to 1, in which
-1 means two data clusterings are completely dissimilar, O
indicates that data clusterings are essentially random, and 1
means two data clusterings are perfectly aligned. It should be
noted that for imbalanced datasets, a large ACC value is only
necessary for good clustering performance, but not sufficient
because trivially classifying all data points into one cluster
will also lead to a large ACC value. Therefore, ACC must
be considered together with NMI and ARI for imbalanced
datasets.

If not otherwise stated, all parameters used in the compar-
ative algorithms follow the guidance of their original papers.
Specifically, FCM, PCM, PFCM, csiFCM, siibFCM, C-PCM,
FWPCM, iFCM, EM-iFCM, and IMI2 employ a typical fuzzi-
fier value of m = 2 [53]. The optimal regularization parameter
(i.e., A) of MEFC varies for different datasets, and we set
A = 1 for all datasets without losing fairness. The A = 1
falling in its empirical optimal range [54]. The vFCM starts
with m = 2 as suggested in [16], and m is automatically
adjusted during iterations by its adaptive design. IMI2 will
traverse the number of clusters within a given range and
merge redundant clusters. We set the minimum number of
clusters to K, the maximum number to 2K, and the number
of clusters after merging to K, where K is the reference
class number. This setting ensures both effectiveness and
efficiency. For EKM, we set o = 0.5 for the four artificial
datasets. A predetermined value of a can be given because
the four datasets have the same dimension and similar data
structures. For the 16 real-world datasets, as their feature
numbers differ, a suitable « value varies accordingly. To avoid
parameter tuning favoring EKM and thus losing fairness to the
comparative algorithms, we propose to set o proportional to
the data variance, as follows

N
a=2N/" |xal3- @1
n=1

Such a selection theoretically benefits convergence and effec-

TABLE II
EXPERIMENTAL RESULTS ON FOUR ARTIFICIAL IMBALANCED DATASETS
WITH C'V > 1 (THE BEST PERFORMANCE IS IN BOLD)

I HKM | FCM | PCM | MEFC | PFCM [csiFCM[siibFCM] C-PCM [FWPCM] iFCM_[EM-iFCM] vFCM | IMI2 | EKM

0.5150 | 0.4982 [ 0.0000 | 0.2270 | 0.4984 | 0.7579 | 0.4924 | 0.4964 | 0.1427 | 0.3184 | 0.3180 | 0.5085 | 0.9547 | 0.9126
0001|4:0.0000]2:0.0002|:0.0001|-£0.0471|40.0503| 0. X 0000] £0.0919 |-+0.0011/::0.0029|+-0.0000
0.2906 | 0.2485 | 0.0000 | 0.0756 | 0.2489 | 0.8545 | 0.2974 | 0.2441 | 0.0116 | 0.1693 | 0.2243 | 0.2739 | 0.9813 | 0.9616
£0.0002|+0.0002|40.0000]£0.0003|+0.0003|+0.0329| +0.0490| -0.0003| £0.0357|+0.0002| +0.1448 |4:0.0029|+0.0017|+0.0000
0.6893 [ 0.6075 | 0.8889 | 0.4818 | 0.6089 | 0.9429 | 0.7443 | 0.5933 | 0.4562 | 0.6964 | 0.7799 | 0.6633 | 0.9968 | 0.9933

0006] 0000 |-0.0003|:0. 0192]0. 0004] +0.0627 |-£0.0055|:0.0003|+0.0000

N1 | 03193 [0.5160 [0.0013 [0.2121 [0.5T8T [ 0.7989 | 0.5090 | 0.5247 [ 0.159T | 0.2553 | 02170 | 0.5170 | 1.000 | 0.9981
Data-B 0000|-0.0000]-:0.0001|+-0.0001{--0.0677|4-0.0419|-0.0686|+0.0577|+0.001 1| £0.0864 |-0.0000| £0.000 |--0.0057
ARI 0.2529 [ 0.2452 [-0.0008 | 0.0547 | 0.2498 | 0.8794 | 0.2461 [ 0.2582 [ 0.0332 [ 0.1034 | 0.0873 [0.2475 | 1.000 | 0.9992
0000[:0.0000]:0.0000|:0. .0486{-£0.1070|-£0.0497|4-0.0009] +0.0817 |+0.0000| £0.000 |--0.0023

ACC__ | 00116 [0.5852 [0.8884 [ 0.4607 | 0.6022 [ 0.9424 | 0.6304 | 0.5839 [ 0.4767 | 0.5450 | 05869 | 0.5942 | 1.000 | 0.9999
0002/+-0.0000[:0.0016|-0. 0278]0, 71]2-0.0008| +0.0776 |40.0000] +0.000 |+0.0004

N1 | 00909 [0.0797 [0.0002 [ 0.0892 | 0.0782 [ 0.1069 | 0.0769 | 0.0757 | 00783 | 0.0242 | 0.0196 | 0.0893 | 0.3700 | 0.9514
Data-C| 0(200 1£0.0002|0.0000[-£0.0001 2i 1281]20.0002] 51[£0.0000] £0.0257 |£0.0000/-£0.0000/+0.0000
ARI 0.0181 [ 0.0034 [-0.0002{ 0.0159 | 0.0015 | 0.0728 | 0.0199 [-0.0017 [ 0.0053 [-0.0147 | -0.0435 [ 0.0160 | 0.1221 | 0.9807
0001]2-0.0002|-0.0001|2-0.0001|-£0.124240.1713| -0, 0000] £0.0322 |-0.0000/-0.0000/2:0.0000

ACC__ | 05754 [ 0.5302 [ 09615 [ 0.5689 | 0.5237 [ 0.6981 | 0.8207 | 0.5126 | 05371 | 0.5695 | 0.8664 | 0.5694 | 0.5221 | 0.9987
[£0.0000/£0.0002|£0.0001|+:0.0002{4-0.0002|40.2108|£+0.0436|-:0.0009| 4:0.0272|4-0.0002| £0.0514 |-£0.0000{=-0.0000|+-0.0000

M1 | 04799103185 [0.0007 | 0.3963 | 0.2353 [0.3984 [0.3022 | 03310 | 0.1733 [ 0.1790 | 0.1452 [ 03456 | 0.7135 | 0.9463
Data-D| £:0.0316|+0.0010/£0.0001|+0.0670|+0.0554|40.0440|+0.0729|+0.0545| +:0.0268|+-0.0093| £0.0173 |-£0.0542+0.0028|+0.0104

0.1096 | 0.0467 |-0.0007| 0.1506 | 0.0389 | 0.0813 | 0.0339 | 0.0480 | 0.0083 | 0.0104 | -0.0082 | 0.0559 | 0.8094 | 0.9954
[-0.0195(:0.0007|:0.0002|2-0.0360| 0. 0260|-0. 0056] £0.0113 |£0.0207/£0.0059|1-0.0049
0.3593 [ 0.2559 [ 0.9256 | 0.4893 | 0.3699 | 0.3357 | 0.2330 [ 0.2501 [ 0.2206 | 0.2962 | 0.2649 [ 0.2721 | 0.9630 | 0.9763
|4:0.0555{-£0.0080|:0.0001|:0.0133] 0. 0398]:0.0379|4:0.0325|£0.0136| £0.0353 |-£0.0384]-0.0000{-0.0045

tiveness of EKM, as explained in Section III-F. For fairness, all
statistical tests (Section IV-F) compare EKM with adaptive
against comparative methods using real-world datasets only.
Results on artificial datasets are provided solely to validate
theoretical properties.

The explicit output of EKM is the set of cluster centroids
{ci}E |, and the membership matrix {uy,} is fully deter-
mined by the equilibrium condition (11). For hard cluster
assignment, EKM assigns each data point x,, to the cluster &
corresponding to the maximum membership value uy,,. This
assignment is equivalent to selecting the nearest centroid cg,
as the membership ug,, inversely correlates with the distance
dien.-

B. Artificial Datasets

Fig. 3 displays scatter plots of the four artificial datasets
along with selected clustering results. The average and the
standard deviation of evaluation indexes over 50 trials are
provided in Table II, where the best results are highlighted in
bold. On Data-A, the data points are sampled from Gaussian
distributions. While on Data-B the data points are sampled
from uniform distributions. Data-C and Data-D are a mixture
of Gaussian and uniform distributions. The difference is that
the majority of data points on Data-C are sampled from a
Gaussian distribution while the majority of data points on
Data-D are sampled from a uniform distribution. Additionally,
Data-D has more classes than Data-C. All four artificial
datasets are highly imbalanced with CV values greater than
one.

We can see from Table II that the performance of benchmark
algorithms is poor on these artificial datasets, precluding IMI2,
which has good performance on Data-A and Data-B, but still
performs poorly on Data-C and Data-D. Only EKM is effective
on all four datasets. In detail, the best benchmark algorithm
(i.e., IMI2) only has 0.3700 and 0.7135 NMI scores on Data-C
and Data-D, respectively, while EKM has 0.9514 and 0.9463
NMI scores. As seen in Fig. 3, the benchmark algorithms
erroneously divide the majority class into multiple clusters to
balance the data size (i.e., the uniform effect) while EKM
does not. This experiment also proves that EKM is versatile
in handling different data distributions.
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Fig. 3. Scatter diagrams of artificial datasets. (a)-(d) Primitive scatter diagrams with reference class labels (indicated by colors). (e)-(f) Clustering results of
some benchmark algorithms (from left to right: HKM [6], FCM [5], csiFCM [31], and PFCM [8]). (i)-(1) Clustering results of the proposed EKM. The black

crosses represent centroids obtained by each algorithm.

C. Study of Parameter Impact

We investigate the influence of the parameter a on
EKM in this experiment. We perform EKM with « val-
ues of 0.05,0.1,0.25,0.4,0.5,1,2.5,4,5 on the four artificial
datasets. Fig. 4 presents the corresponding NMI values for
these o values. The NMI value of HKM is considered a
reference. It is evident that when o > 2.5, the NMI of
EKM closely aligns with that of HKM. This similarity arises
because a sufficiently large o makes the objective of EKM
nearly identical to the objective of HKM. As the value of «
decreases, the NMI of EKM increases abruptly, which implies
the emergence of a repulsive force overcoming the uniform
effect. When o < 0.1, EKM becomes inferior to HKM. This
is because the centroids of EKM tend to overlap when « is
particularly small. Fortunately, the range of « that causes the
centroids to overlap is narrow.

D. Real Datasets with Balanced Data

To evaluate EKM’s effectiveness on balanced data, we
perform it on six real datasets: IS, Seeds, Heart Disease, Wine,
Rice, and WDBC. These datasets are routinely used in the
field of machine learning and are characterized by uniform
class sizes, CV values less than 0.4, and are categorized as
balanced datasets as per our protocol. Table III shows the
clustering results. EKM delivers superior performance on the
Wine dataset and achieves comparable results to the baseline
on the remaining five datasets. Although EKM is designed

Data-A Data-B

1
—o—EKM —e—EKM
09 ——HkM ——HKM
08
0.8
0.7
0.6
S 06 5
=os
04
0.4
03 0.2
02
01
005 01 025 04 05 1 25 4 5 005 01 025 04 05 1 25 4 5
a value a value
Data-C
1 Data-D
—o—EKM 1
——fikm —o—EKM
—— kM
08 -
06 o6
s -
=
= =
0.4 0.4
0.2 0.2
005 01 025 04 05 1 25 4 5 005 01 025 04 05 1 25 4 5
a value a value

Fig. 4. NMI of EKM with different o values on the four artificial datasets.
The blue curve is the NMI of EKM, and the red line is the NMI of HKM as
a reference.

for imbalanced data, this experiment proves that EKM is also
competitive on balanced data.



TABLE III
EXPERIMENTAL RESULTS ON THE SELECTED SIX REAL-WORLD BALANCED
DATASETS WITH C'V' < 0.4 (THE BEST PERFORMANCE IS IN BOLD)

P HKM | FCM | PCM | MEFC | PFCM | csiFCM[siibFCM] C-PCM [FWPCM] {FCM_[EM-IFCM[ vFCM | IMI2_| EKM
0.5873 [ 0.5950 [ 0.0000 | 0.6206 | 0.4962 [ 0.5195 | 0.5925 [ 0.5743 | 0.5452 [ 0.4971 | 0.4727 [0.5958 | 0.5792 | 0.6618
£0.0008|:0.0057|4:0.0000{£0.0009|40.0241|+0.0317|£0.0371{40.0190| +:0.0664|40.0170| £0.0169 |+0.0078|-£0.0762| +0.0138
0.4608 | 0.4960 | 0.0000 | 0.4979 [ 0.3650 | 0.3472 | 0.3776 | 0.4844 [ 0.4022 [ 0.1666 | 0.1422 | 0.5092 | 0.3502 | 0.4810
0.0005|0. 0005£0.0149|0.0587|-0.0794|-£0.0199|+0.0884|+0.0147| £0.0126 |+0.0067|--0.1368| 0.0089
0.5456 | 0.6578 | 0.1429 | 0.5943 | 0.5276 | 0.4977 | 0.5840 | 0.6208 | 0.5576 | 0.4230 | 0.3948 | 0.6611 | 0.5196 | 0.5609
=-0.0003|-0.0146] -0.000 |+£0.0002|0.0139|2-0.0670|-:0.0511|+£0.0246|-0.0775|+0.0163| £0.0157 |=0.0049|-:0.1212] £0.0118
0.7279 | 0.7318 | 0.0558 | 0.7496 | 0.7170 | 0.7200 | 0.6893 | 0.7279 | 0.5400 | 0.7137 | 0.6969 | 0.7384 | 0.7389 | 0.7315
0.0000[:0. 0016/--0.0000|0.0077|-0.0015/-:0.0000|-0.0. 20,0262 |£0.0000/2:0.0000| £0.0000
0.7733 | 0.7768 | 0.0008 | 0.7968 | 0.7607 | 0.7640 | 0.7143 | 0.7733 | 0.4724 | 0.7452 | 0.7190 | 0.7850 | 0.7842 | 0.7715
-0.0000[-0.00: 0017]-0.0000|=-0.0082|-0.0034]-:0.0000|-0.0513|+0.0000| £0.0461 |=-0.0000|=-0.0000] £0.0000
0.9190 | 0.9209 | 0.3363 | 0.9285 [ 0.9143 | 0.9156 | 0.8952 | 0.9190 | 0.7069 | 0.9095 | 0.8969 | 0.9238 | 0.9238 | 0.9190
£0.0000[:0.0023|4:0.0052|+0.0007|4-0.0000|£0.0033| £0.0015|4-0.0000| 4:0.0649|4-0.0000| £0.0412 |:0.0000/-:0.0000] -£0.0000
03162 | 0.0142 | 0.2431 | 0.2500 | 0.2326 | 0.1548 | 0.0364 | 0.1608 | 0.0868 | 0.0000 | 0.0000 | 0.2756 | 0.2078 | 0.2571
Heart 0.0000{+0.0132]:+0.0563-0.0000|+0.0975|+:0.0398|+0.0476|-0.0029) +0.082¢ +0.0000 [+0.0000[+0.0271|+ 0.0000
Disease| 0.3641 [ 0.0033 [ 0.3085 [ 0.3140 [ 0.2995 [ 0.0509 | 0.0163 | 0.1985 | 0.1030 [ 0.0000 [ 0.0000 [ 0.3363 [ 0.2592 | 0.3162
£0.0000-+0.0042|40.0700/+0.0000[£0.1230/+0.0172|+0.0523|4+0.0036| £:0.1050|+-0.0000| £0.0000 |+0.0000/+0.0384|+ 0.0000
0.8020 | 05249 | 0.7761 | 0.7805 | 0.7653 | 0.6101 | 0.5354 | 0.7232 | 0.6344 | 0.5132 | 05132 | 0.7902 | 0.7109 | 0.7815

Seeds

0.0000]-0. |£0.0000]-£0.0689|:0.0284]£0.0549|0.0019] 0. +0.0000 |-0.0000|2:0.0499] £0.0000
NMI 0.8759 [ 0.8759 | 0.0000 | 0.8759 | 0.8097 | 0.6966 | 0.5250 | 0.7847 | 0.3976 | 0.6907 | 0.4846 | 0.8759 | 0.8759 | 0.8920

Wi -0.0000|:0, 0000[40.0171|+0.1663|40.0803|+0.0000| £0.0794|+0.0077| +0.1928 |-0.0000|-:0.0000| +0.0000
ne ARI__| 08975 [ 08975 | 0.0000 [ 0.8975 | 08249 [ 0.6283 | 0.3954 | 0.7856 [ 0.3518 [0.6861 | 0.3589 | 0.8975 | 0.8975 | 0.9134
£0.0000/£0. 0000[:0.0142|-0.2549] £:0.1252|+:0.0000 £0.0987|-£0.0065| =0.1551 |=0.0000|=:0.0000] -£0.0000

0.9663 | 0.9663 | 0.3989 | 0.9663 | 0.9396 | 0.7797 | 0.7129 | 0.9270 | 0.6476 | 0.8897 | 0.6456 | 0.9663 | 0.9663 | 0.9719
0000[:0. 0000/--0.0051|-+0.1834|-+-0.0900]-£0.0000|+0.0742|+0.0027| £0.1051 |+-0.0000|-0.0000] +-0.0000
0.5685 | 0.5688 | 0.0188 | 0.5682 | 0.5742 | 0.5544 | 0.5437 | 0.5783 | 0.0536 | 0.5108 | 0.4332 | 0.5656 | 0.5688 | 0.5659
0000|:0. 0004|0.0008|-0.0001|-£0.0032]-:0.0009) 0. 0.0025 |£0.0000/2:0.0000| £0.0005
0.6815 | 0.6824 | 0.0024| 0.6817 | 0.6876 | 0.6634 | 0.6471 | 0.6914 | 0.0338 | 0.5702 | 0.4482 | 0.6789 | 0.6824 | 0.6777
00000 0004]£0.0008|+0.0001|+0.0109|+-0.0008+-0.013 £0.0034 |50.0000[£-0.0000] £0.0004
0.9129 [ 0.9131 [ 0.5672 [ 0.9129 | 0.9147 [ 0.9074 | 0.9023 | 0.9158 | 0.5941 | 0.8780 | 0.8356 | 0.9121 [ 0.9131 | 0.9117
+0.0000[20. 3]:0.0001|4:0.0002|:0.0000]:0.0033|:0.0002|:0.015: 40.0012 [£0.0000[2:0.0000{ -£0.0001
0.5547 [ 0.5612 | 0.0000 | 0.5547 | 0.5700 | 0.3516 | 0.4202 | 0.2422 [ 0.1138 | 0.0188 | 0.0183 | 0.5621 | 0.5612 | 0.5513
£0.0000/=:0.0000[£-0.0000{0.0000[£-0.0000|£0.2432|£0.1246|4-0.0102| +:0.0626|4-0.0000| £0.0040 |£0.0000/£0.0000] £0.0025
0.6707 | 0.6829 | 0.0000 | 0.6707 | 0.6895 | 0.4093 | 0.5250 | 0.1371 | 0.0281 [ 0.0024 | 0.0022 | 0.6765 | 0.6829 | 0.6444
=-0.0000|2-0. 0000/-£0.0000/-0.3070|2-0.1734|-£0.0074] 0. +0.0013 |£0.0000/2:0.0000| £0.0028
0.9104 | 0.9139 | 0.6274 | 0.9104 [ 0.9156 | 0.7989 | 0.8557 | 0.6898 | 0.5910 | 0.6292 | 0.6290 | 0.9121 | 0.9139 | 0.9027
-0.0000|2-0. 0000/-0.0000|=0.1380|=:0.0810-:0.0048|+-0.044 1 |+-0.0000| £0.0009 |=-0.0000|=-0.0000] £0.0009

Rice
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E. Real Datasets with Imbalanced Data

The considered datasets here are Ecoli, Htru2, Zoo, Glass,
Shill Bidding, Anuran Calls, Occupancy Detection, Machine
Failure, Pulsar Cleaned, and Bert-Embedded Spam. Among
them, Htru2 and Occupancy Detection have a large amount of
data, Glass and Ecoli have 6 and 8 classes respectively, and
Zoo has high dimensionality. They have varying class sizes
with CV values greater than 0.7. Except for Occupancy Detec-
tion and Zoo, the other eight datasets have CV values greater
than 1. Bert-Embedded Spam has over 700 features. Since
the Euclidean distance is ineffective in high-dimensional space
for clustering, we execute principal component analysis on the
Bert-Embedded Spam data. The first five principal components
are used for clustering, as adding more does not improve and
even compromises performance. Table IV displays the results,
where the best results are in bold, highlighting the dramatic
progress made by the proposed EKM over the state-of-the-art
fuzzy clustering methods.

As can be seen from Table IV, in general, EKM obtains the
best performances on eight datasets, and achieves notable clus-
tering performances on the remaining two datasets (Zoo and
Anuran Calls), as confirmed by all three measured clustering
indexes. Due to the structural complexity of real datasets, it
is reasonable that some algorithms perform well on certain
datasets. However, none of the 13 benchmark algorithms
can perform consistently well on all datasets. Specifically,
although csiFCM outperforms EKM on the Zoo dataset, it
performs substantially worse on Htru2, Occupancy Detection,
Shill Bidding, etc. HKM performs well on Anuran Calls
but underperforms on Shill Bidding, Machine Failure, and
Bert-Embedded Spam. In comparison, only EKM preserves
consistently good performance, especially on the Htru2, Shill
Bidding, Machine Failure, and Bert-Embedded Spam datasets.
Specifically, the best benchmark algorithm only has 0.4577,
0.0491, 0.3214, and 0.1785 NMI scores on the four datasets,
respectively, while EKM has 0.5872, 0.6216, 0.5825, and
0.6704 NMI scores.

Fig. 5 illustrates the scatter diagrams of Htru2, Shill Bid-

ding, Machine Failure, and Bert-Embedded Spam datasets,
along with some clustering results. We have applied the t-
distributed stochastic neighbor embedding (t-SNE) [55] tech-
nique to reduce the original feature dimension to 2D for easy
visualization. Comparing Fig. 5(e) - 5(h) with Fig. 5(1) - 5(1),
again, we can see the uniform effect exists in the benchmark
algorithms. Conversely, EKM can accommodate small clus-
ters, implying the existence of a repulsive force overcoming
the uniform effect. Overall, the experiment results provide
strong evidence to support the superiority and consistent
performance of EKM on imbalanced data. Note that we simply
set o proportional to the data variance. EKM’s performance
can be further enhanced by fine-tuning the parameter .

F. Statistical Analysis

To statistically validate the superiority of EKM, we per-
formed the paired t-test and Wilcoxon signed-rank test on the
NMI, ARI, and ACC results. On the ten real-world imbalanced
datasets, EKM significantly outperforms all comparative algo-
rithms with a significant level of p < 0.05. Notably, EKM
improves on average 0.22, 0.31, and 0.21 over FCM in NMI,
ARI, and ACC, respectively. On the 16 real-world mixed
balanced/imbalanced datasets (6 balanced + 10 imbalanced
datasets), the statistical advantage remains significant, showing
EKM’s general applicability for both balanced and imbalanced
data.

G. Empirical Convergence and Algorithm Efficiency

Table V shows the average number of iterations and the
average time (unit: second) per run (each algorithm is run
5000 times). The numbers in brackets in the table are the
ranking numbers of the corresponding algorithms. AVK and
MDK give the average and median number of iterations and
computational time of each algorithm on all test datasets,
respectively. IMI2 involves a scheme of merging clusters and
is not a pure iterative algorithm. Hence, we leave the number
of iterations of IMI2 empty.

As evident from Table V, AVK and MDK are nearly consis-
tent. In terms of AVK, HKM is the fastest algorithm as it does
not require membership calculation. MEFC comes second,
followed by EKM and FCM. EKM is 30% faster than FCM
in AVK and comparable to FCM in MDK. This is because
FCM is slow on the Bert-Embedded Spam dataset. In terms
of absolute speed, MEFC, FCM, and EKM operate within
the same order of magnitude. This aligns with their identical
time complexity of O(NK?2P) per iteration, where N is the
instance number, K is the cluster number, and P is the data
dimension or feature number. The table also demonstrates the
empirical convergence of EKM, averaging 44 iterations or a
median of 20 iterations to reach the specified convergence (20).
In summary, EKM has the same computational cost as FCM.



TABLE IV
EXPERIMENTAL RESULTS ON THE SELECTED TEN REAL-WORLD IMBALANCED DATASETS WITH C'V' > 0.7 (THE BEST PERFORMANCE IS IN BOLD)

Dataset Measurement HKM FCM PCM MEFC PFCM csiFCM | siibFCM | C-PCM | FWPCM iFCM EM-iFCM vFCM IMI2 EKM
NMI 0.8381 0.7764 0.1331 0.8179 0.6611 0.8657 0.7625 0.8197 0.6652 0.5751 0.5548 0.7643 0.7876 0.7912

Zoo 40.0268 | £0.0019 | £0.0000 | £0.0000 | £0.0806 | £0.0054 | £0.0415 | +0.0216 | +0.0804 | +0.0165 40.0392 +0.0185 | £0.0344 | £0.0188
ARI 0.7546 0.6235 -0.0578 0.6444 0.4868 0.8715 0.6423 0.7811 0.4743 0.4061 0.3644 0.5623 0.7730 0.8181

40.0487 | £0.0010 | £0.0000 | £0.0000 | £0.0829 | +0.0034 | +0.1030 | +0.0798 | +0.0948 | +0.0244 +0.0565 +0.0337 | £0.0614 | £0.0783
ACC 0.8248 0.6832 0.3069 0.7228 0.6267 0.8703 0.7305 0.7952 0.5958 0.7093 0.6942 0.6079 0.8139 0.8507

+0.0310 | £0.0000 | £0.0000 | £0.0000 | £0.0536 | £0.0078 | +0.0831 | +0.0621 | +0.0604 | +0.0147 +0.0346 +0.0390 | £0.0422 | $0.0566
NMI 0.3140 0.3073 0.0000 0.3120 0.0721 0.3390 0.3424 0.3217 0.1654 0.1966 0.1672 0.3500 0.3709 0.3764

Glass 40.0046 | £0.0003 | £0.0000 | £0.0012 | £0.0069 | £0.0549 | £0.0413 | +0.0392 | +0.0823 | +0.0293 +0.0294 +0.0457 | £0.0457 | £0.0370
ARI 0.1702 0.1529 0.0000 0.1651 0.0070 0.1930 0.1648 0.1755 0.0734 0.0477 0.0335 0.1706 0.1931 0.1978

+0.0026 | £0.0005 | 40.0000 | £0.0009 | +0.0059 | £0.0435 | $0.0366 | +0.0258 | +0.0659 | £0.0173 +0.0163 +0.0457 | £0.0392 | £0.0193
ACC 0.4586 0.4021 0.3551 0.4487 0.3368 0.4684 0.4202 0.4452 0.4096 0.4060 0.3988 0.4112 0.4777 0.4796

40.0076 | £0.0011 | £0.0000 | £0.0007 | £0.0054 | £0.0476 | £0.0270 | 0.0354 | £0.0584 | £0.0078 40.0090 +0.0457 | £0.0358 | £0.0086
NMI 0.6379 0.5695 0.0656 0.6096 0.5012 0.5985 0.5541 0.5861 0.4746 0.4539 0.4073 0.6289 0.3985 0.6426

Ecoli +0.0040 | £0.0115 | £0.0805 | £0.0076 | £0.0649 | £0.0241 | £0.0464 | +0.0243 | +0.0424 | +0.0180 +0.0304 +0.0055 | £0.1704 | =+0.0024
ARI 0.5032 0.4142 0.0119 0.4815 0.3357 0.4807 0.3697 0.4002 0.2832 0.3679 0.3187 0.4949 0.2779 0.5157

+0.0070 | £0.0204 | $0.0503 | £0.0270 | +0.0752 | £0.0898 | +0.0862 | +0.0495 | +0.0500 | +0.0271 +0.0369 +0.0176 | £0.2343 | $0.0013
ACC 0.6461 0.5769 0.4289 0.6238 0.5302 0.6276 0.5624 0.5564 0.4598 0.6426 0.6105 0.6370 0.5668 0.6482

40.0103 | £0.0160 | £0.0351 | £0.0218 | £0.0435 | £0.0711 | £0.0638 | 0.0458 | +0.0410 | £0.0178 +0.0186 +0.0141 | £0.1214 | £0.0043
NMI 0.4068 0.4100 0.0000 0.4075 0.1289 0.0204 0.3671 0.0415 0.0660 0.0229 0.0179 0.4577 0.3220 0.5872

Hira2 £+0.0000 | £0.0004 | 40.0000 | £0.0002 | £0.0002 | £0.0506 | £0.0290 | +0.0025 | +0.0268 | £0.0032 +0.0416 40.0000 | £0.0003 | £0.0003
ARI 0.607T 0.5796 0.0000 0.6075 0.0462 0.0077 0.5704 0.0178 -0.0117 0.0010 0.0093 0.6616 0.1731 0.7333

40.0000 | £0.0005 | £0.0000 | £0.0002 | £0.0002 | £0.0649 | £0.0379 | £0.0020 | +0.0074 | £0.0134 +0.0392 £0.0000 | £0.0001 | =£0.0002
ACC 0.9366 0.9252 0.9084 0.9366 0.6091 0.8888 0.9337 0.5679 0.5170 0.9057 0.9069 0.9489 0.5223 0.9661

40.0000 | £0.0001 | £0.0000 | £0.0000 | £0.0002 | £0.0637 | £0.0126 | 0.0040 | £0.0151 | £0.0102 +0.0164 40.0000 | £0.0003 | =£0.0000
NMI 0.0021 0.0023 0.0000 0.0042 0.0012 0.0295 0.0351 0.0002 0.0105 0.0491 0.0220 0.0032 0.0023 0.6216

Shill Bidding 4+0.0001 | £0.0000 | 40.0000 | £0.0002 | £0.0000 | £0.0359 | £0.0047 | +0.0000 | +0.0330 | +0.0002 +0.0093 40.0000 | £0.0000 | 40.0000
ARI -0.0006 -0.0002 0.0000 -0.0002 -0.0002 -0.0485 -0.0854 -0.001T 0.0079 -0.0704 -0.0529 0.0108 -0.0002 0.7914

40.0000 | £0.0000 | £0.0000 | £0.0000 | £0.0000 | £0.0482 | £0.0118 | 0.0000 | #0.0252 | +0.0002 40.0252 40.0000 | £0.0000 | =£0.0000
ACC 0.5020 0.5059 0.8932 0.5090 0.5035 0.7457 0.7869 0.5240 0.5937 0.6296 0.8454 0.5871 0.5058 0.9674

40.0002 | £0.0000 | £0.0000 | £0.0003 | £0.0002 | £0.0961 | £0.0182 | 40.0001 | 0.0750 | +0.0004 +0.0261 40.0000 | £0.0001 | =£0.0000
NMI 0.6775 0.5699 0.0101 0.6155 0.4270 0.5575 0.5178 0.5254 0.5159 0.2773 0.2758 0.5149 0.6610 0.6229

Anuran Calls +0.0195 | £0.0002 | +0.0018 | £0.0022 | +0.0153 | £0.0516 | $0.0339 | +0.0112 | $0.0247 | £0.0066 +0.0177 +0.0360 | £0.0081 | £0.0134
ARI 0.5826 0.3414 -0.0029 0.4017 0.2254 0.4329 0.2368 0.3696 0.4268 0.0842 0.0909 0.2997 0.7490 0.5145

40.0174 | £0.0009 | £0.0009 | £0.0027 | £0.0694 | £0.1363 | £0.0694 | £0.0527 | £0.0500 | +0.0056 +0.0228 +0.0623 | £0.0001 | +0.0329
ACC 0.6441 0.4363 0.4808 0.5103 0.3705 0.5682 0.4101 0.4268 0.5123 0.5236 0.5300 0.4374 0.7662 0.5821

+0.0134 | £0.0009 | £0.0008 | £0.0073 | £0.0230 | +0.0799 | +0.0348 | +0.0436 | +0.0271 | +0.0041 +0.0164 +0.0540 | £0.0216 | +0.0420
NMI 0.4890 0.4720 0.0076 0.4710 0.0539 0.0934 0.2982 0.2469 0.0591 0.2553 0.1114 0.4926 0.3585 0.5389

o y Detection 40.0001 | £0.0003 | £0.0002 | £0.0002 | £0.0007 | £0.1560 | £0.1379 | £0.2590 | £0.0464 | +0.0003 +0.0160 £0.0000 | £0.0001 | =£0.0002
v ARI 0.5959 0.5699 -0.0043 0.5670 0.0209 0.0521 0.2175 0.2780 0.0363 0.2922 0.0681 0.6008 0.2659 0.6750

40.0001 | £0.0004 | £0.0002 | £0.0002 | £0.0002 | £0.2248 | £0.2226 | +0.3113 | £0.0682 | +0.0005 +0.0476 40.0000 | £0.0001 | =£0.0002
ACC 0.8912 0.8825 0.7659 0.8815 0.5772 0.7597 0.7026 0.7071 0.6117 0.8330 0.7528 0.8928 0.5132 0.9163

4+0.0000 | £0.0001 | 40.0001 | £0.0001 | 40.0004 | £0.0596 | £0.1361 | £0.1697 | +0.0595 | £0.0001 +0.0901 40.0000 | £0.0001 | $0.0001
NMI 0.0248 0.0281 0.0000 0.0310 0.0284 0.2285 0.0540 0.0705 0.0137 0.3214 0.0128 0.0253 0.2005 0.5825

Machine Failure 40.0000 | £0.0000 | £0.0000 | £0.0000 | £0.0003 | £0.0569 | £0.0292 | 0.1150 | £0.0161 | £0.0034 +0.0421 £0.0000 | £0.0636 | +0.1869
ARI -0.0116 -0.0083 0.0000 -0.0052 0.0007 0.2217 -0.0037 0.0418 0.003T 0.3367 -0.0050 -0.0111 0.1396 0.6506

40.0000 | £0.0000 | £0.0000 | £0.0000 | £0.0001 | £0.0510 | +0.0382 | #0.1386 | #0.0083 | +0.0049 +0.0464 +0.0000 | £0.1158 | +0.1987
ACC 0.5673 0.5418 0.9709 0.5202 0.5146 0.9653 0.6125 0.6145 0.5481 0.9771 0.9505 0.5635 0.7642 0.9863

4+0.0000 | £0.0002 | £0.0000 | £0.0001 | £+0.0007 | £0.0543 | £0.0412 | +0.1481 | +0.0358 | +0.0001 +0.0442 40.0000 | £0.2133 | $0.0068
NMI 0.0311 0.0167 0.0000 0.0201 0.0236 0.0523 0.0044 0.0139 0.0090 0.0019 0.0050 0.0301 0.0159 0.0544

Pulsar Cleaned 40.0002 | £0.0000 | £0.0000 | £0.0000 | £0.0011 | £0.0813 | £0.0081 | 0.0002 | £0.0067 | +0.0015 40.0202 40.0000 | £0.0000 | =£0.0001
ARI 0.0370 0.0069 0.0000 0.0131 -0.0011 0.0731 -0.0067 -0.0010 -0.0039 -0.0078 0.0029 0.0316 0.0446 0.1082

4+0.0003 | £0.0000 | 40.0000 | £0.0001 | £0.0002 | £0.1193 | £0.0160 | +0.0002 | 40.0080 | £0.0110 +0.0184 £0.0000 | £0.0000 | 40.0002
ACC 0.7329 0.5714 0.9794 0.617T 0.5019 0.9488 0.9043 0.5045 0.6036 0.9232 0.9777 0.7091 0.8367 0.8834

40.0008 | £0.0001 | £0.0000 | £0.0004 | £0.0012 | £0.0973 | £0.1231 | £0.0019 | £0.0659 | £0.0557 +0.0164 £0.0000 | £0.0000 | =£0.0002
NMI 0.1517 0.1249 0.0000 0.0472 0.1122 0.0330 0.0431 0.1785 0.0238 0.0481 0.0082 0.0000 0.1174 0.6704

Bert-Embedded Spam 40.0001 | £0.0000 | £0.0000 | £0.0374 | £0.0023 | £0.0791 | £0.0946 | +0.0049 | +0.0004 | +0.0147 40.0152 40.0000 | £0.0000 | =£0.0000
ARI 0.0830 0.0550 0.0000 0.0289 -0.0026 0.0080 0.0296 0.1019 -0.0669 0.0192 0.0014 0.0000 0.0262 0.8216

£+0.0003 | £0.0000 | 40.0000 | £0.0265 | +0.0007 | £0.1084 | $0.1287 | +0.0080 | +0.0004 | £0.0060 +0.0119 40.0000 | £0.0000 | £0.0000
ACC 0.6453 0.6174 0.8659 0.5837 0.5482 0.8210 0.8281 0.6616 0.8038 0.8677 0.8657 0.8659 0.5845 0.9664

40.0002 | £0.0000 | £0.0000 | £0.0390 | £0.0012 | £0.0816 | £0.0832 | 0.0068 | 0.0002 | 0.0006 40.0029 40.0000 | £0.0000 | =£0.0000

TABLE V
AVERAGE NUMBER OF ITERATIONS AND AVERAGE CALCULATION TIME (UNIT: SECOND) OF EACH ALGORITHM
Datase( HRM FCM PCM MEFC PFCM cSTFCM SibCKM___C-PCM___FWPCM iFCM___ EM-FCM___ vFCM ™12 EKM
DataA Teer 73 137 7.9 29.0 333 30.7 280 168 446 342 370 56.0 - 21
) Time 0.005(1)  0.008¢4)  0.017¢9)  0013(7) 0.033(11)  0.021(10)  0.277(14)  0.006(2)  0.016(8)  0.009(5)  0.012(6)  0.138(13)  0.056(12)  0.007(3)
DataB Tter 92 132 299 30.1 288 5.1 174 7.1 241 280 263 340 B 175
Time 0.003(1)  0.0084)  0.019(10) 0.013(9) 0.031(11)  0.011(8)  0.168(14)  0.006(2)  0.010(5)  0.007(3)  0.008(6)  0.084(13)  0.049(12)  0.009(7)
DataC Tter 163 17.6 175 36.0 239 350 21 157 737 71 749 940 B 235
Time 0.008(2)  0.014(3)  0.028(7)  0.023(6) 0.048(11)  0.040(8)  0.624(14)  0.008(1) 0.035(10)  0.015(4)  0.034(9)  0.354(13)  0.105(12)  0.017(5)
DataD Tter 148 236 378 254 398 245 252 17.6 73 291 291 834 B 154
Time 0.033(2)  0.091(6)  0.229(10)  0.082(5)  0.364(11)  0.142(9) 1.867(14)  0.0393)  0.030(1)  0.056(4)  0.102(7)  1515(13)  0.873(12)  0.107(8)
Is Tter 15.9 40.T 20.4 209 53.0 498 321 240 29.6 87.6 70.3 90.0 - 241
3 Time 0.021(1)  0.1106)  0.161(8)  0.058(2) 0.218(10)  0.104(5)  0.824(12)  0.068(3)  0.152(7)  0.223(11)  0.195(9)  3.296(14)  1.555(13)  0.074(4)
Seeds Tter 85 10.4 433 TLT 133 12.6 26.0 11.9 325 3 18.2 440 - 12.0
Time 0.001(1)  0.001(6)  0.004(10)  0.001(4)  0.003(9) 0.002(7) 0.028(14)  0.001(2)  0.005(11)  0.001(3) 0.001(5) 0.027(13) 0.011(2) 0.002(8)
Heart Disease Tter 9.9 269.3 9.0 125 227 500.0 4988 134 33 2623 500 1340 - 187
N Time 0.002(1)  0.074(7) 0.078(8)  0.003(3)  0.081(9) 2.095(11) 1.646(14)  0.004(4)  0.002(2) 0.055(6) 0.120(10)  0.459(13)  0.258(12) 0.005(5)
Wine Tter 7.0 135 21.9 10.6 253 15.7 404 259 19.4 34.1 97.5 60.0 - 11.7
Time 0.000(1)  0.002(4) 0.003(8)  0.001(2)  0.004(9) 0.002(5) 0.037(13)  0.003(7)  0.005(10)  0.003(6) 0.008(11)  0.054(14)  0.020(12) 0.001(3)
Rice Tter 8.4 8.7 232 8.9 12.7 14.0 17.8 13.2 72.8 20.8 26.7 52.0 - 9.1
Time 0.004(1)  0.009(5)  0.022(10)  0.006(2)  0.021(9) 0.011(6) 0.214(13)  0.0094)  0.072(12)  0.011(7) 0.016(8) 0.361(14)  0.068(11) 0.009(3)
WDBC Tter 74 10.8 9.4 10.6 32.4 500.0 500.0 16.1 16.2 33.1 95.0 62.0 - 9.9
Time 0.001(1)  0.003(4) 0.005(6)  0.002(2)  0.009(8) 2.307(12) 0.933(14)  0.005(5)  0.013(9) 0.008(7) 0.028(10)  0.250(13)  0.034(11) 0.002(3)
Zoo Tter 4.4 310 19.7 23 350 344 37.8 28 23 30.0 66.0 - 4989
Time 0.001(1) _ 0.005(7) 0.008(9)  0.003(3)  0.009(10) 0.006(8) 0.048(11)  0.005(6)  0.001(2) 0.004(5) 0.004(4) 0.096(14)  0.058(12)  0.069(13)
Glass Tter 8.5 272 8.9 29.4 18.8 31.4 45.0 13.7 257 236 243 122.0 - 253
o Time 0.001(1)  0.006(8)  0.008(10)  0.006(5)  0.009(11) 0.006(7) 0.096(13)  0.002(2)  0.007(9) 0.003(3) 0.004(4) 0.190(14)  0.059(12) 0.006(6)
Ecoli Tter a1 29 182 23 322 405 452 168 30 558 56.9 791 - 229
Time 0.002(2)  0.019(9)  0.023(10)  0.010(4)  0.029(11) 0.015(8) 0.197(13)  0.005(3)  0.002(1) 0.012(6) 0.014(7) 0.209(17)  0.138(15) 0.011(5)
Hira2 Tter 127 338 92 152 215 500.0 500.0 534 525 273 136.8 380 - 108
Time 0.046(1)  0.175(4)  0.244(5)  0.067(3)  0.357(7)  17.884(12) 27.836(14) 0.450(9) 0450(8)  0.272(6)  5275(13) 1.411(10)  1.569(11)  0.059(2)
Shill Bidding Tter 2.0 15.0 47 243 227 36.8 04 138 256 541 380 172.0 5 223
Time 0011(1)  0.026(3)  0.046(6)  0.029(4) 0.064(10)  0.046(7)  0.794(13)  0.023(2)  0.056(8)  0.073(11)  0.060(9)  2.574(14)  0.287(12)  0.033(5)
“Anuran Calls Tter 225 357 131 241 393 26 54 325 240 65.7 793 2472 B 13
” Time 0339(1)  0527(3)  L1176)  0377(2)  1.502(7)  0.614(4)  5.119(12)  1.710(8) 2.089(9)  3473(10) 4381(11) 31.74(13) 31.874(14)  0.719(5)
Occupancy Detection Tter 15 256 187 286 24 280 194.9 N 198 235 283 740 B 148
Time 0.032(1)  0.1326) 02139  0.097(4) 0.291(11)  0.109(5)  12.090(14) 0.091(3)  0.163(8)  0.144(7)  0214(10) 2.060(13)  0.603(12)  0.067(2)
Machine Failure Tter 134 220 N 1274 4221 345 29.8 122.6 100.8 2725 72.0 - 225
Time 0.015(1)  0.0554)  0.077(6)  0.022(2) 0.442(10)  0.724(12)  1.058(13)  0.076(5)  0331(9)  0.230(7)  0778(11)  1.338(14)  0.328(8)  0.049(3)
Pulsar Cleaned Tter 253 7.1 10.4 184 60.7 500.0 500.0 244 50.2 574 2278 78.0 - 21.4
Time 0.045(1)  0.068(3) 0.114(5)  0.052(2)  0.435(9) 12.560(12)  22.953(14)  0.132(6)  0.268(7) 0.325(8) 1407(11)  2.231(13)  0.827(10) 0.075(4)
Bert-Embedded Spam Tter 31.6 500.0 8.6 498.7 21.2 500.0 500.0 359 285 500.0 534 500.0 - 41.6
- h Time 0.015(1)  0.618(10)  0.630(11)  0.388(5)  0.642(12) 4.866(9) 8.520(14)  0.028(2)  0.030(3) 0.322(6) 0.039(4) 2.008(13) 0.441(8) 0.045(5)
AVK Tter 13.5 58.5 18.2 44.7 344 166.4 158.3 21.7 33.9 76.8 113.6 107.9 - 440
Time 0.029(1)  0.098(4) 0.152(6)  0.063(2)  0.230(8) 2.078(10) 4.266(14)  0.138(5)  0.187(7) 0.262(9) 0.635(11)  2.520(13) 1.961(12) 0.066(3)
MDK Tter 12.4 22, 17.7 23.7 27.1 359 41.3 169 25.6 342 55.1 76.0 - 20.0
Time 0.007(1)  0.023(4) 0.037(9)  0.018(3)  0.056(10)  0.075(11) 0.809(14)  0.008(2)  0.030(6) 0.035(7) 0.036(8) 0.410(13)  0.198(12) 0.025(5)
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Fig. 5. Scatter diagrams of some selected real imbalanced datasets (from left to right: Htru2, Shill Bidding, Machine Failure, and Bert-Embedded Spam).
The t-SNE technique [55] has been applied to reduce the original feature dimensions to 2D for easy visualization. Different colors represent labels. (a)-(d)
Primitive scatter diagrams with reference class labels. (e)-(f) Clustering results of some benchmark algorithms (from left to right: FWPCM [19], HKM [6],

FCM [5], and MEFC [10]). (i)-(1) Clustering results of the proposed EKM.

V. CONCLUSION

This paper presents equilibrium K-means (EKM), a novel
fuzzy clustering algorithm robust to imbalanced data. EKM
is simple, interpretable, and scalable to large datasets. The-
oretical analysis regarding the effectiveness and convergence
of EKM is given, and compatible with the empirical study.
Experimental results on datasets from various domains show
that EKM greatly outperforms hard K-means, fuzzy C-means,
and other state-of-the-art fuzzy clustering algorithms on imbal-
anced datasets and performs comparably on balanced datasets.
However, the current EKM uses Euclidean distance as a
similarity measure, and its performance may degrade on high-
dimensional or non-spherical clusters. Future research will
focus on integrating EKM with deep representation learning
to address high-dimensional challenges, as well as developing
kernelized variants to handle arbitrary cluster shapes. These
extensions aim to preserve EKM’s ability to handle imbalanced
data clustering while expanding its applicability to broader
data scenarios.
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