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A B S T R A C T

Weighted 𝑙1 minimization schemes are common methods to achieve compressed sensing (CS). However, they
fail in the presence of inaccurate prior knowledge or improper scaling of weights due to inappropriately
assigned large weights causing large and destructive errors in signal recovery. This paper proposes a theory-
based algorithm to identify and correct such destructive weights for each signal entry. The enhancement is
achieved through a novel sparsity-inducing property (SIP) which establishes a necessary condition for successful
signal recovery. SIP outperforms existing properties such as coherence, restricted isometry property, and
nullspace property by indicating which signal entries fail to be recovered. This unique advantage enables us
to correct destructive weights that do not satisfy the SIP condition, making signal recovery successful where
it previously failed. Results from many numerical experiments demonstrate that our proposed method can
improve the signal recovery capability, robustness, and stability of the weighted 𝑙1 minimization for a wide
range of applications, including sparse and compressive signal recovery, noise-aware recovery, sparse error
correction, fast image acquisition, and sub-Nyquist sampling.
1. Introduction

1.1. Compressed sensing and weighted 𝑙1 minimization

Compressed sensing (CS) refers to the recovery of signal with 𝑛
coefficients (e.g., 𝐱𝑜 ∈ R𝑛) from 𝑚 linear measurements where 𝑚
is less than 𝑛 [1,2]. This requires 𝐱𝑜 to be sparse (i.e., most of its
coefficients are zero) or compressible (not strictly sparse but most of its
coefficients are close to zero) [3–5]. CS is widely applied in fields such
as medical imaging [6–8], radar imaging [9–11], seismology [12,13],
astronomy [14,15], and facial recognition with severe occlusion [16].
CS is achieved through an optimization framework called 𝑙1 minimiza-
tion [3]. For simplicity, in the absence of noise, 𝑙1 minimization can be
formulated as

min
𝐱

‖𝐱‖1, s.t. 𝐲 = 𝐀𝐱, (1)

where 𝐱 = (𝑥1, 𝑥2,… , 𝑥𝑛) is the solution vector (signal), ‖𝐱‖1 ∶=
∑

𝑖 |𝑥𝑖|,
called 𝑙1 norm, and 𝐲 ∈ R𝑚 contains known linear measurements with
𝐲 = 𝐀𝐱𝑜 for some known sensing matrix 𝐀 ∈ R𝑚×𝑛 (also called mea-
surement matrix in literature). However, in practice, 𝑙1 minimization
cannot provide accurate results due to insufficient sparsity levels of 𝐱𝑜.
To increase recovery accuracy, weights have been assigned on entries
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of 𝐱𝑜. Such methods have been referred to as weighted 𝑙1 minimization
schemes:

min
𝐱

‖𝐖𝐱‖1, s.t. 𝐲 = 𝐀𝐱, (2)

where 𝐖 = diag(𝑤1,… , 𝑤𝑛), called weight matrix, is a diagonal matrix
with positive main diagonal entries, i.e., 𝑤𝑖 > 0, ∀𝑖 ∈ {1,… , 𝑛}. A
typical weighting principle is to put large weights on small entries of
𝐱𝑜, and small weights on large entries so as to ensure the reconstructed
signal has the same sparsity pattern of 𝐱𝑜 [17].

1.2. Prior works on weighted 𝑙1 minimization and their shortcomings

Assigning appropriate weights has been the subject of many studies.
These studies can be classified into two categories. Studies belonging to
the first category use signal knowledge as input to construct weights.
Specifically, Vaswani and Lu [18] proposed a weighted 𝑙1 minimization
called modified-CS, which assigns zero weight to the support of the
true signal and unit weight to others. Friedlander et al. [19] proposed a
more general weighting scheme by putting a small but nonzero weight
on the support. Mansour and Yilmaz [20] and Needell et al. [21]
extended the two-weight setting to a multiple-weight setting by as-
suming that multiple support estimates are available. Other subsequent
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studies on support-based weighting schemes can be found in [22–24].
Besides utilizing the support information, Khajehnejad et al. [25] used
ncertainty information where coefficients of the true signal were par-
itioned into two sets according to their probabilities of being nonzero.
imilarly, Zhang et al. [26] proposed a binary signal recovery algorithm

utilizing the prior probability of each entry being nonzero. These
studies suffer a common problem, namely, when the required prior
knowledge is inaccurate, these weighting schemes generate overlarge

eights on nonzero entries leading to huge and destructive errors in
ignal recovery (i.e., destructive weights). Existing analyses, which uti-
ize concepts such as restricted isometry property (RIP) [27], nullspace

property (NSP) [28], weighted robust NSP [29], and coherence [30],
can quantitatively assess how the accuracy of required knowledge affect
recovery performance. However, all of them fail to provide methods
to assign more appropriate weights in the presence of imperfect prior
knowledge.

The second category of weighting schemes does not assume any
prior knowledge. Instead, these schemes involve solving a sequence of
weighted 𝑙1 minimization problems where the weights of the current
weighted 𝑙1 minimization are set to the reciprocal of the solution of
he previous weighted 𝑙1 minimization. These weighting schemes are

known as reweighting schemes. Following the first proposal of Candes
et al. [31], various reweighting schemes have been developed for differ-
ent applications. For example, Peng et al. [32] proposed a reweighting
scheme for image restoration, Zhang et al. [33] proposed a reweighting
cheme for phase retrieval from magnitude-only measurements, and
ang et al. [34] proposed another for bearing fault diagnosis. These

schemes applied a single scaling factor to scale all weights through
empirical trial-and-error methods. The purpose was to control the
rate of change of the weights with respect to the signal coefficients
and prevent the weights from becoming infinite. Unfortunately, these
chemes did not provide a theoretical explanation for their empirical

choices of scaling factors. Worst, their solutions needed to be tailored to
pecific characteristics of the signal, the measurement matrix, and other

factors [31–36]. Any changes in signal characteristics can render their
schemes ineffective [37–39]. In summary, there are two deficiencies in
xisting weighted 𝑙1 minimization schemes: (1) inaccurate prior knowl-

edge and (2) improper scaling of weights. Both these points lead to the
assignment of destructive (i.e., inappropriate) weights. Unfortunately,
we currently lack a method to prevent it.

1.3. Research gap

In many applications, especially those involving dynamic situations
such as transmission or sampling of non-stationary signals, prior knowl-
edge of the signal will be inaccurate causing failure in existing weighted
𝑙1 minimization schemes. While customized empirical simulation can
determine a scaling factor for the weights, a theory-based analytical
method to determine the range of destructive weight per signal entry
that can prevent the assignment of a single destructive weight could
not be found.

1.4. Contribution

In this paper, we propose a novel theory-based method to iden-
tify and correct destructive weights in weighted 𝑙1 minimization. We
egin by defining a new property of sensing matrices and deriving

a necessary condition for successful signal recovery by weighted 𝑙1
minimization equipped with arbitrary weights. This property, which
we refer to as the sparsity-inducing property (SIP), differs fundamen-
tally from existing properties such as coherence, RIP, and NSP. The
atter can only assert whether recovery succeeded or failed, while
IP provides analytical details and determines signal coefficients that
re failed to be recovered. For the signal coefficients that are not
ecovered, our algorithm will determine the maximum weight values
eyond which destructive errors will occur. These calculations are
2 
conducted for each signal entry of 𝐱𝑜 and a weight-clipping algorithm
will correct (i.e., reduce) the value of the destructive weights. The
benefits of applying the weight-clipping method include but are not
limited to enhancing the overall quality of weights to improve the
signal recovery capabilities of weighted 𝑙1 minimization; increasing the
robustness of weighting schemes, enabling them to maintain satisfac-
tory performance despite inaccurate prior knowledge or inappropriate
weight scaling; and improving the stability of constructing high-quality
weights. We demonstrate these benefits and the versatility of the pro-
posed method by applying it to representative applications that utilize
different 𝑙1-based optimization frameworks. These frameworks include
equality-constrained 𝑙1 minimization, inequality-constrained 𝑙1 mini-
mization, constraint-free 𝑙1 minimization, 𝑙1-analysis minimization, and
total variation minimization.

Our contribution can be summarized in three key points: (1) We
derive a new property, SIP, providing requirements of successful signal
recovery weighted 𝑙1 minimization methods. (2) We introduce weight-
clipping inspired by SIP to correct excessive weights, enhancing signal
recovery. (3) We integrate weight-clipping into Candes’ reweighting
scheme and evaluate its improvement through extensive simulations
across representative applications of CS.

1.5. Organization

The rest of the paper is organized as follows. In Section 2, we
introduce SIP and present our theoretical results. In Section 3, we
introduce the proposed weight-clipping method. Section 4 describes
experiments that demonstrate the effectiveness and broad applicability
of the proposed method in terms of sparse and compressible signal
recovery, noise-aware recovery, sparse error correction, image process-
ing, and sub-Nyquist sampling. Finally, we conclude and discuss future
research directions in Section 5.

2. Theoretical results

2.1. SIP in unweighted 𝑙1 minimization

𝑙1 minimization appears to possess an oracular ability, as it seem-
ingly discerns which signal coefficients are nonzero. However, it occa-
ionally behaves blindly, wrongly estimating a nonzero signal coeffi-
ient as zero. We note that this phenomenon is associated with a set of
calar values linked to the sensing matrix, which we refer to as ‘sparsity-
nducing constants (SICs)’ in this paper. As our findings can be extended
o the complex domain, not limited to the real domain, we use F to
enote both the real domain R and complex domain C.

Definition 1 (Sparsity-Inducing Constant). Given a matrix 𝐀 =
[𝐚1|𝐚2|⋯ |𝐚𝑛] ∈ F𝑚×𝑛 where 𝑚 < 𝑛, let B𝑖 denote the set containing
ll the 𝑚 × 𝑚 full rank sub-matrices of 𝐀 except the 𝑖th column. For
ach integer 𝑖 = 1, 2,… , 𝑛, define the 𝑖th sparsity-inducing constant 𝑟𝑖

of the matrix 𝐀 as

𝑟𝑖 = min
𝐁∈B𝑖

‖𝐁−1𝐚𝑖‖1. (3)

Particularly, if B𝑖 is a null set, then define 𝑟𝑖 = +∞.
The SIC possesses the following two types of invariance.

Proposition 1 (Permutation Invariance). 𝑟𝑖 remains unchanged after
permuting any column of 𝐀 except the 𝑖th column.

Proof. Denote 𝐏 ∈ R𝑚×𝑚 any column-wise permutation matrix. Then
‖(𝐁𝐏)−1𝐚𝑖‖1 = ‖𝐏𝐁−1𝐚𝑖‖1 = ‖𝐁−1𝐚𝑖‖1. ■

Proposition 2 (Invertible Linear Transformation Invariance). 𝑟𝑖 remains
unchanged after left multiplying 𝐀 by any invertible matrix.
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Fig. 1. Example of a failed signal separation due to the mixing matrix 𝐀 having SICs less than one. (a) Five source signals. (b) Two mixed signals. (c) Failed 𝑙1 minimization
reconstruction with destructive errors. (d) Successful reconstruction (31 dB signal-to-noise ratio) by the proposed weight-clipping method deduced by SIP theory (see Section 3).
Proof. Denote 𝐂 ∈ F𝑚×𝑚 any invertible matrix. Then ‖(𝐂𝐁)−1𝐂𝐚𝑖‖1 =
‖𝐁−1𝐂−𝟏𝐂𝐚𝐢‖𝟏 = ‖𝐁−1𝐚𝑖‖1. ■

Permutation Invariance can assist in narrowing the search space
for computing {𝑟𝑖}𝑛𝑖=1, and Invertible Linear Transformation Invariance
highlights that any invertible linear transformation of the measure-
ments or sensing matrix will not affect any properties solely deter-
mined by {𝑟𝑖}𝑛𝑖=1. We find that the blind behavior of 𝑙1 minimization
mentioned earlier is related to SIC. Note that, we assume that both
optimization problems (4) and (2) have a unique optimal solution, and
those problems without a unique optimal solution are out of the scope
of our theorem.

Theorem 1 (Compressed Loss Theorem). Given a matrix 𝐀 ∈ F𝑚×𝑛 where
𝑚 < 𝑛, let 𝑟𝑖 denote its 𝑖th sparsity-inducing constant. If 𝑟𝑖 ≤ 1, then 𝑥∗𝑖 = 0,
where 𝑥∗𝑖 is the 𝑖th entry of the unique optimal solution to the problem
min
𝐱

‖𝐱‖1, s.t. 𝐲 = 𝐀𝐱. (4)

Proof. See Appendix A where Proposition 1 is used. ■

Based on Theorem 1, when 𝑟𝑖 ≤ 1, the 𝑖th signal coefficient estimate
becomes zero, irrespective of its true value. This implies that the
compressive-recovery framework employing 𝑙1 minimization results in
the loss of certain information. Consequently, the concept of the pro-
posed SIP emerges, characterized by the generation of zero estimates
without considering the true values when recovering the signal from
the compressed data. This aligns with the intuition that if a column
vector 𝐚𝑖 is relatively small (indicating a small 𝑟𝑖), the associated signal
coefficient 𝑥𝑖 contributes less to satisfying the equality constraint. In
other words, the value of 𝑥𝑖 is less significant. Therefore, optimizing
‖𝐱‖1 will result in a zero estimate for 𝑥𝑖.

For the sake of illustration, let us say:

𝐀 =
[

100 0 1
0 100 1

]

.

For any 𝐱𝑜 =
[

𝑥1 𝑥2 𝑥3
]𝖳, we have 𝐱∗ =

[

𝑥∗1 𝑥∗2 0
]𝖳 with 𝑥∗1 =

𝑥 + 0.01𝑥 and 𝑥∗ = 𝑥 + 0.01𝑥 such that 𝐀𝐱 = 𝐀𝐱∗ and ‖𝐱 ‖ ≥ ‖𝐱∗‖
1 3 2 2 3 𝑜 𝑜 1 1

3 
(the equality holds only if 𝑥3 = 0). Hence, solving the problem (4) fails
to recover 𝑥3 if 𝑥3 ≠ 0. This failure can be identified and corrected by
the proposed SIP.

The necessary condition for the perfect recovery of signals based on
SIP is as follows:

Theorem 2 (Necessary Condition under SIP). Define I as the support of 𝐱𝑜,
i.e., I ∶= supp(𝑥𝑜) ⊆ {1,… , 𝑛} and S as the set containing the column index
of 𝐀 whose corresponding SIC is less or equal to one, i.e., S = {𝑖 ∣ 𝑟𝑖 ≤ 1}.
Given 𝐲 = 𝐀𝐱𝑜, the solution to the 𝑙1 minimization (4) is exactly 𝐱𝑜 only if
I ∩ S = ∅.

Proof. This is a straightforward implication of Theorem 1. ■

SIP differs from existing properties characterizing a sensing matrix
such as coherence, RIP, and NSP. Next, we present a case where coher-
ence, RIP, and NSP become uninformative, yet SIP provides valuable
information. We also show how destructive the error is when the nec-
essary condition under SIP is not satisfied. We applied 𝑙1 minimization
to achieve signal separation, a technique widely used in audio signal
processing [40–42]. We generated five static signals (illustrated in
Fig. 1(a)) incorporating two modulated signals, two periodic signals,
and one pulse signal, and mixed them into two-channel signals (de-
picted in Fig. 1(b)) by linearly combining them using a matrix encoding
their amplitude amplification and attenuation

𝐀 =
[

1.4374 1.1547 0.9639 0.8141 0.7148
0.7043 0.7559 0.8381 1.0044 1.3572

]

.

The five static signals are not sparse in the time domain but possess
non-overlapping narrow frequency bands. Therefore, we performed the
𝑙1 minimization in the Short-time Fourier transform (STFT) domain,
and then obtained time-domain signals via inverse STFT. The mixing
matrix 𝐀 does not respect coherence, RIP, or NSP. Except that the
recovery will not be perfect, no more details can be obtained from these
properties. Nonetheless, given the SICs of the matrix

𝐫 =
[

1.6757 0.8982 0.8532 0.8687 2.1076
]

,

SIP asserts that the recovery will not only fail (according to Theorem 2)
but also the middle three channel signals will be erroneously re-
constructed as zero (according to Theorem 1). The numerical result
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displayed in Fig. 1(c) corroborates this assertion. This additional infor-
mation provided by SIP is valuable as it opens up a way to modify 𝑙1
minimization. Fig. 1(d) exhibits the successful recovery outcome after
pplying the proposed weight-clipping method, an application of SIP
heory to improve the recovery ability of 𝑙1 minimization, which will
e elaborated in Section 3. In summary, the major difference between

SIP and prior works, especially with regard to coherence, RIP, and NSP,
is that SIP pinpoints specific signal recovery failures; that is, it reveals

hich signal coefficients on the support set fail to be recovered. Prior
orks cannot do so.

2.2. SIP in weighted 𝑙1 minimization

Weighted 𝑙1 minimization is more general than unweighted 𝑙1 min-
mization, as the latter can be viewed as a special case of the former.
herefore, the theorem presented in the previous section is extended
elow to generalize SIP for weighted 𝑙1 minimization:

Theorem 3 (Generalized Necessary Condition under SIP). Define I as the
support of 𝐱𝑜 and S𝑊 as the set containing the column index of 𝐀𝐖−1 whose
corresponding SIC is less or equal to one. Given 𝐲 = 𝐀𝐱𝑜, the solution to the
weighted 𝑙1 minimization (2) is exactly 𝐱𝑜 only if I ∩ S𝑊 = ∅.

Proof. Suppose 𝐱∗ is the unique optimal solution to a weighted 𝑙1
inimization with a sensing matrix 𝐀 and a weight matrix 𝐖, and 𝐳∗

s the unique optimal solution to an unweighted 𝑙1 minimization with a
ensing matrix 𝐀𝐖−1. These two optimization problems are equivalent
n the sense that 𝐱∗ = 𝐖−1𝐳∗. Hence, 𝐱∗ and 𝐳∗ share the same support.
f I ∩ S𝑊 ≠ ∅, according to Theorem 1, there are zero values at entries
f 𝐳∗ indexed by I. Therefore, 𝐱∗ does not share the same support of 𝐱𝑜,
hich means 𝐱∗ ≠ 𝐱𝑜. ■

If S𝑊 is an empty set, the requirement of SIP is satisfied. However,
if S𝑊 is not an empty set and has an intersection with the support
set I, the corresponding weights (one-to-one mapping by the index
contained in I ∩ S𝑊 ) are destructive because, according to Theorem 3,
the corresponding nonzero coefficients in the support of 𝐱𝑜 will be
rroneously estimated as zero, leading to failed signal recovery. We use
his new insight to quantitatively explain the limitation of using a single
caling factor for scaling weights in the iterative reweighting scheme.
or each trial, we generated a sparse signal of length 𝑛 = 15 with 𝑘
onzero entries, i.e., 𝑘 = ‖𝐱𝑜‖0 where ‖ ⋅‖0 is the 𝑙0 norm. The locations
f the nonzero entries were randomly selected and their values were
hosen independently from a standard Gaussian distribution. We set

= 8 and sampled a 𝑚 × 𝑛 random matrix 𝐀 with independent
nd identically distributed (i.i.d.) standard Gaussian entries. Given the
ata 𝐲 = 𝐀𝐱𝑜, weights were constructed following the classic iterative
eweighting scheme [31] with four iterations. The reweighting process
nvolved a sequence of iterations using the solution from the previous
teration to calculate the weights for the current iteration: for each
= 1,… , 𝑛,

𝑤(𝑙+1)
𝑖 = 1

|𝑥(𝑙)𝑖 | + 𝜖
, (5)

where 𝑥(𝑙)𝑖 is the optimal solution to the weighted 𝑙1 minimization at
he 𝑙th iteration, 𝑤(𝑙+1)

𝑖 is the weight for the (𝑙 + 1)th iteration, and 𝜖 is
a scaling factor used to scale the weights for preventing infinity in the
case of 𝑥(𝑙)𝑖 = 0. We conducted 500 trials, recording |S𝑊 | (the size of
𝑊 ) for each trial. The results are shown in Fig. 2(a). As 𝜖 decreased,

the frequency of the occurrence of a large |S𝑊 | increased, implying
the reweighting process more easily generated destructive weights. S𝑊
was not an empty set in more than 95% of trials when 𝜖 = 0.01. This
ercentage was much higher than the 7% observed in the unweighted 𝑙1
inimization. This finding explains the lack of efficacy of the iterative

eweighting scheme when 𝜖 is too small. Although it is easier for S𝑊 to
be an empty set at larger 𝜖 values, as shown in Fig. 2(b), the empirical
4 
probability of perfect recovery1 did not increase beyond 0.1 and even
decreased at 𝜖 = 10 because the weights became almost identical. The
maximum improvement of the probability of perfect recovery was less
than 0.1 through an exhaustive search of 𝜖. This numerical experiment
demonstrates the limitation of using a single scaling factor (i.e., 𝜖)
to uniformly scale all weights. This limitation can be overcome by
the proposed weight-clipping method that independently regulates the
weight of each entry according to its SIC value. This ability will be
introduced in the next section.

3. Weight-Clipping

3.1. Clipping overly large weights

According to the SIP theory, an effective weight matrix should make
S𝑊 an empty set. If S𝑊 is not empty, an appropriate modification to
the weight matrix should be made to ensure that S𝑊 becomes empty.
Our idea is that if 𝑟𝑖, the 𝑖th SIC of 𝐀𝐖−𝟏, is less than or equal to one,
then 𝑤𝑖 is a destructive weight identified by Theorem 3. We correct 𝑤𝑖
by reducing its value to make 𝑟𝑖 greater than one. If the 𝑟𝑖 is already
greater than one, we keep the value of 𝑤𝑖. This operation essentially
clips overly large weights, with the following mathematical expression:
for each 𝑖 = 1,… , 𝑛,

𝑤′
𝑖 =

{

𝑟𝑖𝑤𝑖∕𝛼 , if 𝑟𝑖 < 𝛼 ,
𝑤𝑖, otherwise,

∀𝑖 = 1,… , 𝑛, (6)

where 𝑤𝑖 is the original weight, 𝑤′
𝑖 is the modified/clipped weight, 𝑟𝑖

is the 𝑖th SIC of the matrix 𝐀𝐖−1, and 𝛼 is a parameter introduced to
allow a flexible clipping range. After clipping, the value of weights gets
smaller because clipping occurs when 𝑟𝑖∕𝛼 < 1. To ensure 𝑟𝑖 is greater
than one after clipping, the parameter 𝛼 should be chosen greater than
one. For brevity, we refer to this weight modification method (6) as
weight-clipping. Three numerical experiments were implemented to
demonstrate the effectiveness of the proposed method.

Firstly, the experiment depicted in Fig. 1 was replicated.
Unweighted 𝑙1 minimization can be viewed as a weighted 𝑙1 minimiza-
ion with the identity matrix as the weight matrix. Examining the SIC
alues shows that assigning unit weights to the middle three channel
ignals is inappropriate. We applied the weight-clipping with 𝛼 = 1.1 to
he identity matrix and used the clipped weight matrix to reconstruct
he signal. As evidenced in Fig. 1(d), compared to the unweighted 𝑙1

minimization shown in Fig. 1(c), the reconstruction with the modified
weight matrix showed significant improvement.

In the second experiment, we repeated the experiment whose results
re shown in Fig. 2 with the application of the proposed weight-

clipping at each reweighting iteration. As demonstrated in Fig. 3, the
erfect recovery probability noticeably increased (by 0.3 when 𝑘 =
) compared to the original non-clipping reweighted 𝑙1 minimization.
dditionally, it was found that a larger value of 𝛼 (e.g., 𝛼 = 3)

ed to better results than a smaller value (e.g., 𝛼 = 1.1). This is
ecause when 𝛼 = 1.1, certain nonzero signal coefficients were still
naccurately estimated as zero despite their corresponding 𝑟𝑖 values
xceeding (but close to) one. By Increasing 𝛼, 𝑟𝑖 values rose, leading
o successful recovery. Consequently, it is hypothesized that stronger
ecessary conditions than that in Theorem 3 may exist. Identifying such

conditions will be a valuable focus for future research.
The third experiment is an application of the proposed weight-

clipping to a weighting scheme that requires prior support knowledge.
Suppose T𝑜 ⊂ {1,… , 𝑛} is the support of the original signal 𝐱𝑜, T is
an estimate of T𝑜. For simplicity, let T be a subset of T𝑜, and |T| =
[𝑎𝑐 𝑐 ⋅ |T𝑜|], where 𝑎𝑐 𝑐 ∈ (0, 1) is the estimation accuracy and [⋅] means

1 A perfect recovery is defined if the maximum absolute difference between
𝐱𝑜 and its estimate 𝐱est is less than 1e − 3, i.e., ‖𝐱𝑜−𝐱est‖∞ < 1e − 3 where ‖ ⋅‖∞
is the infinity norm.
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Fig. 2. (a) Histogram of the size of S𝑊 defined in Theorem 3. Weights are constructed by the ‘iterative reweighting scheme [31]’ with different values of 𝜖. (b) The empirical
probability of perfect recovery1, as a function of sparsity level 𝑘 = ‖𝐱𝑜‖0.
Fig. 3. (a) Histogram of the size of S𝑊 defined in Theorem 3. Weights are constructed by the ‘iterative reweighting scheme [31]’ with a fixed 𝜖 = 0.01, and at each reweighting
iteration clipped by the proposed weight-clipping (6) with different values of 𝛼. (b) The empirical probability of perfect recovery (declared when ‖𝐱𝑜 − 𝐱est‖∞ < 1e − 3).
taking the closest integer. We try to solve the following optimization
problem

min
𝐱

𝑛
∑

𝑖=1
|𝑤𝑖𝑥𝑖|, s.t. 𝐲 = 𝐀𝐱, 𝑤𝑖 =

{

0, 𝑖 ∈ T
1, otherwise.

(7)

This problem is initially introduced in [18]. Its limitation is that the
recovery ability is sensitive to the accuracy of the support estimation as
a large weight can be erroneously assigned to a nonzero entry leading
to zero estimation. Herein, we apply weight-clipping to control the
size of the weights, improving the quality of the weights when the
support estimation is inaccurate, i.e., 𝑎𝑐 𝑐 < 1. A total of 500 recovery
trials were conducted, with each trial generating a sparse signal 𝐱𝑜 of
length 𝑛 = 15, containing 𝑘 nonzero Gaussian entries. The sparse signal
was then measured by a randomly generated Gaussian matrix, yielding
𝑚 = 8 measurements. The support-based weighted 𝑙1 minimization (7)
was applied to reconstruct 𝐱𝑜 from these measurements, serving as a
benchmark for recovery performance comparison after implementing
the proposed weight-clipping (6). We tried two estimation accuracy lev-
els, i.e., 𝑎𝑐 𝑐 = 0.5 and 𝑎𝑐 𝑐 = 0.8. The results, presented in Fig. 4, show a
notable improvement after applying weight-clipping, particularly when
𝑎𝑐 𝑐 = 0.8. This experiment demonstrates that the proposed weight-
clipping can improve weight quality in the presence of imperfect prior
knowledge.

3.2. Numerical upper bounds of SIC

Weight-clipping utilizing the upper bounds of SIC is as effective
as utilizing exact SIC values if the parameter 𝛼 is chosen wisely but
the former is much more computationally efficient. In this regard, we
introduce two algorithms capable of computing the upper bounds of SIC
in polynomial time. Recall the definition of SIC (see Definition 1), the
value of SIC is the minimal 𝑙1 norm of 𝐁−𝟏𝐚 where 𝐁 is a submatrix
of 𝐀. The idea of computing an upper bound of SIC is to find a
submatrix (say �̂�) that gives a reasonably small 𝑙1 norm. Since ‖𝐁−1𝐚‖1
is inversely proportional to the absolute determinant of 𝐁 (‖𝐁−1𝐚‖ =
1

5 
‖adj(𝐁)𝐚‖1∕| det (𝐁)| where det (𝐁) is the determinant of 𝐁 and adj(𝐁) is
the adjugate matrix of 𝐁), �̂� could be the submatrix with the largest
possible absolute determinant. Unfortunately, finding the submatrix
with the largest absolute determinant is NP-hard [43]. Thus, we use the
heuristic algorithm, Khachiyan’s algorithm (re-expressed in Algorithm
1 for convenience and consistency) proposed in [44] to find a submatrix
with a reasonably large absolute determinant. In Algorithm 1, ‖ ⋅ ‖2
denotes the 𝑙2 norm, and (⋅)𝖳 denotes the transpose for a real-valued
vector or conjugate transpose for a complex-valued vector. 𝐀S is a
column submatrix (S contains the column indices) of 𝐀. Then, the upper
bound of SIC is given by ‖�̂�−1𝐚‖1. The specific procedure is presented
in Algorithm 2.

Algorithm 1: Khachiyan’s Algorithm to Find the Largest Abso-
lute Determinant Submatrix [44].

Input: 𝐀 ∈ F𝑚×𝑛

Output: 𝐁 ∈ F𝑚×𝑚

𝐕 ← 𝐀;
S ← ∅;
while |S| < 𝑚 do

Search for the largest 𝑙2 norm column vector 𝐯𝑗 ∈ 𝐕;
S ← S ∪ 𝑗;
𝐕 ← 𝐕 − 𝐯𝑗𝐯𝖳𝑗 𝐕∕‖𝐯𝑗‖

2
2;

end
𝐁 ← 𝐀S;

Inspection of Algorithm 2 indicates that Algorithm 1 needs to be
executed 𝑛 times, some of which may have duplicate outputs. There-
fore, Algorithm 2 has certain redundancy in the calculation. In some
applications such as MRI image processing, 𝑛 can be large. If one would
like to shorten the computation time, we can run a slightly modified
Algorithm 1 once and reuse its output. This faster procedure which
gives the second (perhaps larger) upper bound of SIC is presented in
Algorithm 3.
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Fig. 4. The empirical probability of perfect recovery as a function of sparsity level 𝑘 = ‖𝐱𝑜‖0. The black dash curve represents the unweighted 𝑙1 minimization. The blue dash curve
represents the support-based weighted 𝑙1 minimization [18]. The solid curves represent support-based weighted 𝑙1 minimization incorporating the proposed weight-clipping (6)
with different values of 𝛼. (a) The support estimation accuracy is 0.5. (b) The support estimation accuracy is 0.8.
Algorithm 2: Algorithm to Calculate an Upper Bound of SIC.
Input: Matrix 𝐀 ∈ F𝑚×𝑛 with 𝑚 < 𝑛
Output: {�̂�𝑖}𝑛𝑖=1, the upper bound of SICs of 𝐀
𝑖 ← 1;
while 𝑖 ≤ 𝑛 do

𝐚𝑖 represents the 𝑖-th column vector of 𝐀;
𝐀𝑖 represents the matrix containing all the column vectors
of 𝐀 except 𝐚𝑖 ;
if 𝐀𝑖 is not full row-rank then

�̂�𝑖 ← ∞;
else

Execute Algorithm 1 with the input of 𝐀𝑖, and denote
the output as 𝐁𝑖 ;

�̂�𝑖 ← ‖𝐁−1
𝑖 𝐚𝑖‖1 ;

end
𝑖 ← 𝑖 + 1;

end

Algorithm 3: Faster Algorithm to Calculate an Upper Bound of
SIC.

Input: Matrix 𝐀 ∈ F𝑚×𝑛 with 𝑚 < 𝑛
Output: {�̂�𝑖}𝑛𝑖=1, the upper bound of SICs of 𝐀
𝐕 ← 𝐀;
Initialize a sequence (𝑠𝑘)𝑚+1𝑘=1 ;
𝑘 ← 1;
while 𝑘 ≤ 𝑚 + 1 do

Search for the largest 𝑙2 norm column vector 𝐯𝑗 ∈ 𝐕;
𝑠𝑘 ← 𝑗;
𝐕 ← 𝐕 − 𝐯𝑗𝐯𝖳𝑗 𝐕∕‖𝐯𝑗‖

2
2;

𝑘 ← 𝑘 + 1;
end
𝑖 ← 1;
while 𝑖 ≤ 𝑛 do

𝐚𝑖 represents the vector of the 𝑖-th column of 𝐀 ;
S𝑚,𝑖 represents a set which contains the first 𝑚 elements of
(𝑠𝑘)𝑚+1𝑘=1 except the element 𝑖;

𝐁𝑖 ← 𝐀S𝑚,𝑖 ;
�̂�𝑖 ← ‖𝐁−1

𝑖 𝐚𝑖‖1;
𝑖 ← 𝑖 + 1;

end

4. Numerical experiments

In order to verify and establish the validity and benefits of the pro-

posed weight-clipping, seven numerical experiments were conducted to

6 
examine the effect of three factors: signal distribution, noise, and sparse
model. The design of these experiments follows the test pipeline of the
well-known iterative reweighting scheme [31]. Five types of 𝑙1 min-
imization were involved. Specifically, the use of equality-constrained
𝑙1 minimization to investigate Gaussian, Bernoulli, and compressible
signal recovery is reported in Sections 4.1, 4.2, and 4.3; Inequality-
constrained 𝑙1 minimization to examine the impact of noise is reported
in Section 4.4; Unconstrained 𝑙1 minimization, total variation minimiza-
tion, and 𝑙1-analysis minimization to examine three common sparse
models are reported in Sections 4.5, 4.6, and 4.7, respectively. The
aim of these experiments is to demonstrate that the proposed weight-
clipping can help weighted 𝑙1 minimization achieve better, more robust,
and more stable CS in various situations.

During the experiment, weight-clipping was added to the iterative
reweighting scheme, and the modified algorithm was called clipping-
reweighted 𝑙1 minimization, whose equality-constrained version is sum-
marized as follows:

1. Set the iteration count 𝑙 to zero and 𝑤(0)
𝑖 = 1, 𝑖 = 1,… , 𝑛.

2. Solve the weighted 𝑙1 minimization problem

𝐱(𝑙) = ar g min
𝐱

‖𝐖(𝑙)𝐱‖1, s.t. 𝐲 = 𝐀𝐱. (8)

3. Update the weight: for each 𝑖 = 1,… , 𝑛,

𝑤(𝑙+1)
𝑖 = 1

|𝑥(𝑙)𝑖 | + 𝜖
. (9)

4. Calculate the SIC upper bound of 𝐀(𝐖(𝑙+1))−1 using Algorithm 3.
Denote them as {�̂�(𝑙+1)𝑖 }𝑛𝑖=1.

5. Clip the weight: for each 𝑖 = 1,… , 𝑛,

𝑤(𝑙+1)
𝑖 ←

{

�̂�(𝑙+1)𝑖 𝑤(𝑙+1)
𝑖 ∕𝛼 , if �̂�(𝑙+1)𝑖 < 𝛼 ,

𝑤(𝑙+1)
𝑖 , otherwise.

(10)

6. Terminate on convergence or when 𝑙 reaches the maximum
number of iterations 𝑙𝑚𝑎𝑥. Otherwise, 𝑙 ← 𝑙 + 1 and go to step
2.

For the choice of 𝛼 in Step 5, empirically, for larger values of
𝑚 and 𝑛, a larger value 𝛼 should be set. An adaptive strategy is
provided in Section 4.3 and tested in Sections 4.3, 4.4, 4.5, and 4.6
for automatically selecting 𝛼 when it cannot be predetermined. Kindly
note that the modified algorithm does not change the stopping criteria
of the original iterative reweighting scheme. Our SIP solution provides
a better initial point for the iterative reweighting scheme and helps to
prevent the original reweighting process from converging to a wrong
(local) optimum.

To solve the optimization problem (8), one can first solve

𝐳(𝑙) = ar g min
𝐳

‖𝐳‖1, s.t. 𝐲 = 𝐀(𝐖(𝑙))−1𝐳, (11)

which can be fed directly into the existing 𝑙1 minimization solver;
(𝑙) (𝑙) (𝑙) −1 (𝑙)
then 𝐱 can be obtained by 𝐱 = (𝐖 ) 𝐳 . The 𝑙1 minimization
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solver we used in this section comes from the software package 𝑙1-
AGIC (available at https://candes.su.domains/software/l1magic/). A

ycle from steps 1 to 6 is referred to as a trial.
The above six steps provide a framework that combines weight-

clipping and iterative reweighting. Variations can be made in Steps
2–4 for specific situations. For example, when noise is present in
the measurements, one can solve an unconstrained 𝑙1 minimization
instead of the constrained 𝑙1 minimization (8) in Step 2. This paper
iscusses five individual cases in Sections 4.3–4.7. These are: noise-free
easurements; noisy measurements; sparse error in the measurements;
on-sparse signals but with sparse gradients; and non-sparse signals in
he time domain but sparse in the frequency domain.

4.1. Sparse and compressible signal recovery

An experiment was conducted to investigate the ability of the
roposed clipping-reweighted 𝑙1 minimization to recover sparse signals.
or each trial, we sampled a signal 𝐱𝑜 of length 𝑛 = 256 from one of the
hree types of distributions: (1) a 𝑘-sparse2 Gaussian signal with i.i.d.
tandard Gaussian coefficients randomly placed on 𝑘 positions, (2) a 𝑘-
parse Bernoulli signal with i.i.d. symmetric Bernoulli ±1 coefficients,
r (3) a compressible signal that was the sum of a 𝑘-sparse Gaussian

signal with 𝑘 = 45 and a randomly permuted sequence {𝑖−1∕𝑝}𝑛𝑖=1 for
 fixed 𝑝 = 0.7. Before summation, the sequence was randomly sign-

flipped and normalized so that the maximum absolute coefficient was 1.
From the signal, we collected 𝑚 = 100 measurements using 𝑚×𝑛 matrix
𝐀 with i.i.d. standard Gaussian entries. We set the maximum number
of iterations 𝑙max = 4 (more iterations hardly improved the result).
Parameters 𝜖 and 𝛼 were fixed during the reweighting iterations. We
conducted 500 trials for each combination of 𝛼, 𝜖, and 𝑘.

The empirical probabilities of perfect recovery of reweighted 𝑙1
inimization with fixed 𝜖 = 0.1 (labeled as RW. L1 in the figure)

re compared with the clipping-reweighted 𝑙1 minimization with fixed
𝜖 = 0.1 and various 𝛼 values (labeled as Clip RW. L1) in Fig. 5(a).
A perfect recovery is declared when the maximum absolute difference
between 𝐱𝑜 and its estimate 𝐱est is less than 1e − 3 (i.e., ‖𝐱𝑜 − 𝐱est‖∞ <
1e − 3). We see a clear improvement over the original reweighted 𝑙1
minimization. With the appropriate value of 𝛼, the oversampling factor
𝑚∕𝑘 (the smaller, the better) required to achieve perfect recovery in all
500 trials decreased from approximately 100∕33 ≈ 3 to approximately
100∕38 ≈ 2.6; and when 𝑘 = 45, the probability of perfect recovery
increased from 0.45 to 0.8. These improvements by weight-clipping
were quite robust for a wide range of 𝛼 values. Fig. 5(b) illustrates
the comparison among the performance of unweighted 𝑙1 minimization
labeled as Unweight. L1 in the figure); reweighted 𝑙1 minimization

with various 𝜖; and clipping-reweighted 𝑙1 minimization with a fixed
𝛼 = 30. As seen in the figure, the clipping-reweighted 𝑙1 minimization
with a suboptimal choice of 𝜖 = 0.01 still possessed a comparable
erformance to the original reweighted 𝑙1 minimization with an optimal
= 0.1.

The performance for Bernoulli signal recovery is shown in Fig. 5(c).
The limited decay of Bernoulli coefficients results in less variation in

eights, which in turn reduces the impact of weight-clipping. Nonethe-
ess, our results demonstrate that weight-clipping can effectively im-
rove the reweighted 𝑙1 minimization for better recovery of sparse
ignals with Bernoulli coefficients, albeit to a lesser degree than for
ther signal types.

The result for compressible signals is shown in Fig. 5(d). The perfor-
ance metric is 𝑙2 reconstruction error ratio (the smaller, the better),
hich is defined as ‖𝐱𝑜−𝐱(4)crw‖2∕‖𝐱𝑜−𝐱(4)rw‖2, where 𝐱(4)rw and 𝐱(4)crw are the
stimate of 𝐱𝑜 given by the original and clipping reweighted 𝑙1 mini-
ization with four iterations, respectively. The average 𝑙2 reconstruc-

ion error ratio in this experiment was 0.59, indicating that the average
econstruction error was reduced by 41% through weight-clipping.

2 A signal is said to be 𝑘-sparse if it has 𝑘 nonzero coefficients.
7 
Fig. 5(e) illustrates an example of signal reconstruction with 𝑛 =
50, 𝑚 = 20, and 𝑘 = 8, demonstrating how weight-clipping fa-
cilitates successful signal recovery. The reconstruction achieved by
clipping-reweighted 𝑙1 minimization (in red) was perfect, while the
reconstruction by the original reweighted 𝑙1 minimization (in blue)
ailed. The failure of the latter can be attributed to the weight on

the 39th signal coefficient being destructive weight (as suggested by
�̂�(4)39 = 1.05, which is too close to 1), causing the 39th signal coefficient
to be incorrectly estimated as zero. In contrast, the weight clipped
according to the SIP theory was more appropriate (as suggested by
̂(4)39 = 9.40), resulting in a successful signal recovery.

4.2. Recovering non-stationary signals with changing variances

In this experiment, we investigated the recovery performance of
non-stationary signals with changing variances. For each trial, we
generated a signal 𝐱𝑜 of length 𝑛 = 256 containing 𝑘 nonzero entries.
The positions of these nonzero entries were randomly chosen, and their
values were drawn from an i.i.d Gaussian distribution with a variance
f 𝜎2. We collected 𝑚 = 100 measurements from the signal using 𝑚 × 𝑛
atrix 𝐀 with i.i.d. standard Gaussian entries. The maximum number

f reweighting iterations was set to four (𝑙max = 4). We conducted 500
rials for each of the three selected values of 𝜎2: 0.1, 1, and 10. We

implemented the original reweighted 𝑙1 minimization with different 𝜖
values while fixing 𝜖 = 0.1 for the proposed clipping-reweighted 𝑙1

inimization and setting 𝛼 = 30. The results are displayed in Fig. 6.
We can observe that for the original reweighted 𝑙1 minimization, the
ptimal choice of 𝜖 varied with different 𝜎2 values. For instance, 𝜖 =

0.1 was optimal when 𝜎2 = 0.1, while 𝜖 = 1 was optimal when
𝜎2 = 10. However, with weight-clipping, 𝜖 = 0.1 consistently achieved
recovery performance comparable to, or even better than, the best
benchmarks with finely tuned 𝜖 values. This experiment demonstrates
that weight-clipping improves the robustness of the iterative reweight-
ing scheme, enabling effective non-stationary signal recovery with a
fixed parameter setting.

4.3. Adaptive choice of 𝛼

The second numerical experiment was conducted to investigate the
ituation where the value of 𝛼 cannot be predetermined but must be

estimated during the reconstruction process. Our approach is to set 𝛼
in proportion to the median of {�̂�𝑖}𝑛𝑖=1 as this can increase the value of
a small 𝑟𝑖 after weight-clipping, thus avoiding false zero estimation due
to SIP. The parameter 𝛼 of (10) can be calculated by

𝛼 = 2 ⋅ med({�̂�(𝑙)𝑖 }𝑛𝑖=1). (12)

We repeated the experiment whose result was shown in Fig. 5(b)
with the adaptively selected 𝛼. The result is shown in Fig. 7. The per-
formance of the clipping-reweighted 𝑙1 minimization using adaptively
selected 𝛼 was comparable to that of using carefully tuned 𝛼. The same
conclusion can be drawn when 𝑛 = 10, 50, and 100. The use of 2 as the
factor in (12) was an arbitrary choice from test runs and it worked well.

4.4. Recovery from noisy measurements

In Sections 4.1 and 4.2, we report that the proposed weight-clipping
gives the benefits of recovering sparse signals in the noise-free situation
using equality-constrained 𝑙1 minimization. In this section, we report
an experiment conducted to examine the benefits of weight-clipping
for recovering sparse signals in the presence of noise. The aim of the
experiment was to recover sparse signals from noisy data 𝐲 = 𝐀𝐱𝑜 +
𝐞, where 𝐞 was an unknown deterministic or stochastic noise. This
problem was formulated by a quadratic inequality constraint [4,45]:
min
𝐱

‖𝐱‖1, s.t. ‖𝐲 − 𝐀𝐱‖ ≤ 𝛿 , (13)

https://candes.su.domains/software/l1magic/
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Fig. 5. Results of sparse signal recovery from noise-free measurements. Gaussian signal recovery is shown in (a) with 𝜖 = 0.1 and various 𝛼 and in (b) with 𝛼 = 30 and various
𝜖. The signal to be recovered has a length of 𝑛 = 256 with 𝑘 Gaussian coefficients. The number of random measurements is 𝑚 = 100. Sparse signal recovery with Bernoulli ±1
coefficients is shown in (c). The statistics of the ratio (the smaller, the better) between the 𝑙2 reconstruction error of clipping-reweighted 𝑙1 minimization and the 𝑙2 reconstruction
error of original reweighted 𝑙1 minimization for compressible signals are shown by the histogram in (d). An example of recovering a sparse signal with Gaussian coefficients
demonstrating the effectiveness of weight-clipping is shown in (e).
where 𝛿 is set to ensure that the original solution 𝐱𝑜 is feasible in
the case of deterministic noise or feasible with high probability in
the case of stochastic noise. Accordingly, we adapted Step 2 of the
equality-constrained clipping-reweighted algorithm as:

𝐱(𝑙) = ar g min
𝐱

‖𝐖(𝑙)𝐱‖1, s.t. ‖𝐲 − 𝐀𝐱‖2 ≤ 𝛿 . (14)

For each trial, we sampled a 𝑘-sparse Gaussian signal of length
𝑛 = 256 with 𝑘 = 45. The locations of the nonzero coefficients
were chosen randomly, and their values were independently sampled
from a standard Gaussian distribution. We set 𝑚 = 100 and sampled
𝑚 × 𝑛 measurement matrix 𝐀 with i.i.d. standard Gaussian entries. We
further normalized 𝐀 such that each column vector had unit 𝑙2 norm
magnitude. We sampled noise 𝐳 of length 𝑚 = 100 from standard
Gaussian distribution, and subsequently, multiplied it by the factor
𝜎 = 1

√

𝑚
𝛽‖𝐀𝐱𝑜‖2. We set 𝛿2 = 𝜎2(𝑚 + 2

√

2𝑚) as a likely upper bound
of ‖𝐳‖22. Specifically, each entry of 𝐳 followed a Gaussian distribution
(𝑧𝑖∕𝜎 ∼ 𝑁(0, 1)). The mean and variance of 𝑧2𝑖 ∕𝜎

2 were 1 and 2,
respectively. By the central limit theorem, when 𝑚 was not too small,
‖𝐳‖22∕𝜎

2 approximately followed a Gaussian distribution with mean 𝑚
and variance 2𝑚. Thus, the probability that ‖𝐳‖22 exceeded 𝛿2 was the
probability that a Gaussian variable exceeded its mean by at least two
standard deviations, which was about 2.5%.
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We set 𝜖 = 0.1 and chose 𝛼 according to our adaptive strategy (12).
The number of reweighting iterations was set to four. We still used
the 𝑙2 reconstruction error ratio as a performance metric to highlight
the improvement afforded by the clipping-reweighted 𝑙1 minimization
when compared to the original reweighted 𝑙1 minimization.

We carried out 500 trials for each of the two values of 𝛽. The results
are presented in Fig. 8. When the noise level was small (e.g., 𝛽 =
0.05), the clipping-reweighted 𝑙1 minimization outperformed the orig-
inal reweighted 𝑙1 minimization, with an average 𝑙2 reconstruction
error ratio of 0.81. The superiority persisted until 𝛽 = 0.2, where the
average 𝑙2 reconstruction error ratio was 0.99. In the experiment of
𝛽 = 0.2, some nonzero coefficients that were incorrectly estimated as
zero remained estimated as zero even after their weights were clipped.
Therefore, we conclude that the lack of effectiveness of the proposed
weight-clipping when 𝛽 ≥ 0.2 is likely due to the weights not being
clipped aggressively enough. Overall, weight-clipping facilitates sparse
signal recovery from measurements with a certain degree of noise.

4.5. Sparse and non-stationary error correction

Suppose a transmitter sends a block of arbitrary signal 𝐱𝑜 ∈ R𝑛

(not necessarily sparse) to a remote receiver. The problem is that an
unknown error occurs during transmission, so what is received is a
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Fig. 6. Results of sparse signal recovery from noise-free measurement. The length of measurement is 𝑚 = 100. The desired signal 𝐱𝑜 has a length of 𝑛 = 256 and 𝑘 nonzero entries
following i.i.d. Gaussian distribution with a variance of 𝜎2. (a) 𝜎2 = 0.1. (b) 𝜎2 = 1. (c) 𝜎2 = 10.
Fig. 7. Sparse signal recovery from noise-free measurements using adaptively selected
𝛼 (see (12)). The black dash curve represents the unweighted 𝑙1 minimization. The
colorful dash curves represent the original reweighted 𝑙1 minimization with various 𝜖
values. The solid curves represent the proposed clipping-reweighted 𝑙1 minimization
with adaptive 𝛼.

block of the corrupted signal. If the error occurs only intermittently,
it is proposed in [46] to send over-complete linear measurements 𝐀𝐱𝑜
instead of 𝐱𝐨, where 𝐀 ∈ R𝑚×𝑛 with 𝑚 > 𝑛. The desired signal 𝐱𝑜 can
be recovered by solving an unconstrained 𝑙1 minimization formulated
as below

min
𝐱∈R𝑛

‖𝐲 − 𝐀𝐱‖1, (15)

where 𝐲 = 𝐀𝐱𝑜+𝐞𝑜 is the received corrupted signal, and 𝐞𝑜 is an arbitrary
and unknown error vector. The theorem posits that if the proportion
of the corrupted entries is within a certain range, or in other words,
if 𝐞𝑜 is sufficiently sparse, the solution to (15) exactly recovers 𝐱𝑜.
Candes et al. [31] empirically demonstrate that the recovery ability of
reweighted 𝑙1 minimization surpasses that of unweighted 𝑙1 minimiza-
tion. However, the performance of their reweighted 𝑙1 minimization is
sensitive to the characteristics of the error, as shown in this experiment.
We prove that weight-clipping can enhance the reweighted 𝑙1 minimiza-
tion, helping to maintain or even improve recovery performance in the
presence of non-stationary errors.

Different from the previous cases, in this task, we pursue the spar-
sity of 𝐞 = 𝐲 − 𝐀𝐱 instead of 𝐱. Therefore, it is no longer 𝐀 but
9 
𝐀† = (𝐀𝖳𝐀)−1𝐀𝖳, the Moore–Penrose inverse matrix of 𝐀, plays the
role of the sensing matrix. Accordingly, we adapted Steps 2–4 of the
clipping-reweighted algorithm for this error-correction problem:

2. Solve the weighted 𝑙1 minimization problem

𝐱(𝑙) = ar g min
𝐱

‖𝐖(𝑙)(𝐲 − 𝐀𝐱)‖1. (16)

3. Set 𝐞(𝑙) = 𝐲 − 𝐀𝐱(𝑙), and update the weight: for each 𝑖 = 1,… , 𝑛,

𝑤(𝑙+1)
𝑖 = 1

|𝑒(𝑙)𝑖 | + 𝜖
. (17)

4. Calculate the upper bound of SIC of 𝐀†(𝐖(𝑙+1))−1 using Algo-
rithm 3. Denote them as {�̂�(𝑙+1)𝑖 }𝑛𝑖=1.

For each trial, we sampled a signal 𝐱𝑜 with 𝑛 = 128 i.i.d. standard
Gaussian entries. We set 𝑚 = 4𝑛 = 512, and sampled an 𝑚 × 𝑛 matrix
𝐀 with i.i.d. standard Gaussian entries, producing the up-sampled
signal 𝐀𝐱𝑜 for transmission. To simulate the intermittent errors during
the transmission process, we randomly selected 𝑘 entries of 𝐀𝐱𝑜 and
replaced each entry with (1) its sign flip, simulating random changes
in signal polarity; (2) its product with a randomly generated factor
drawn from a standard Gaussian distribution, simulating multiplicative
interference; (3) its sum with a randomly generated number from
a standard Gaussian distribution, simulating additive interference; or
(4) an i.i.d. standard Gaussian sample, simulating signal loss during
transmission (replacing signal samples with Gaussian noise samples).
We ran 500 trials for each type of error. We implemented the orig-
inal reweighted 𝑙1 minimization with various values of 𝜖, while for
the clipping-reweighted 𝑙1 minimization, we fixed 𝜖 at 0.1, with 𝛼
adaptively determined by (12). The probability of perfect recovery
(declared when ‖𝐱𝑜 − 𝐱est‖∞ < 1e − 3) after four reweighted iterations
is shown in Fig. 9. We observed that for the original reweighted 𝑙1
minimization, the optimal value of 𝜖 varied with the error type. For
example, the parameter 𝜖 = 0.1 was optimal for the third type of
error but performed poorly with the other error types. In comparison,
the clipping-reweighted 𝑙1 minimization, with a constant 𝜖 = 0.1,
either matched or exceeded the best benchmarks across all four error
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Fig. 8. Results of sparse signal recovery from noisy measurements. Gaussian signal recovery is shown in (a) with 𝛽 = 0.05 and (b) with 𝛽 = 0.2 from 𝑚 = 100 random measurements
of length 𝑛 = 256 signals with 𝑘 = 45 nonzero Gaussian coefficients. Histogram shows the statistic of the ratio of 𝑙2 reconstruction error between the proposed clipping-reweighted
𝑙1 minimization and the original reweighted 𝑙1 minimization.
Fig. 9. Results of signal recovery from measurements with intermittent error. The desired signal 𝐱𝑜 has length 𝑛 = 128, and the corrupted measurement vector 𝐲 has length
𝑚 = 4𝑛 = 512 with 𝑘 corrupted entries. The empirical probability of successful recovery depends on the error proportion k/m. The black dashed curve represents unweighted 𝑙1
minimization, the colorful dashed curves represent original reweighted 𝑙1 minimization with various 𝜖 values, and the solid curve represents clipping-reweighted 𝑙1 minimization
with 𝜖 = 0.1 and adaptively chosen 𝛼. Subfigures (a), (b), (c), and (d) share the same legend and illustrate the performance of signal recovery subject to different error types.
types. These results suggest that our proposed algorithm offers a more
reliable solution in scenarios where errors vary dynamically and timely
adjustment of 𝜖 is not feasible. In conclusion, our proposed algorithm
provides a more robust approach for sparse error correction.

4.6. Total variation minimization for fast image acquisition

This section reports an experiment conducted to investigate the
effectiveness of applying weight-clipping to recover graph signals with
sparse variation. The total variation (TV) minimization that minimizes
TV norm is developed to reduce the sampling requirement for MRI
to achieve faster image acquisition [6]. Weighted TV minimization by
minimizing a weighted TV norm can increase the sharpness of the re-
constructed image. However, destructive weights are assigned to some
pixels, leading to blurred regions. Our proposed weight-clipping can
correct destructive weights identified by our SIP theory, thus resulting
in clearer images.

The TV norm of a two-dimensional array (𝑥𝑖,𝑗 ), 1 ≤ 𝑖, 𝑗 ≤ 𝑛, is defined
as

‖(𝑥𝑖,𝑗 )‖TV ∶=
∑

‖(𝐷 𝑥)𝑖,𝑗‖2, (18)

1≤𝑖,𝑗≤𝑛
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where (𝐷 𝑥)𝑖,𝑗 is a two-dimensional array containing discrete gradients
along vertical and horizontal directions. In detail, (𝐷 𝑥)𝑖,𝑗 = (𝑥𝑖+1,𝑗 −
𝑥𝑖,𝑗 , 𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗 ) when 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1 while at the boundary (𝐷 𝑥)𝑛,𝑗 =
(0, 𝑥𝑛,𝑗+1 − 𝑥𝑛,𝑗 ) when 1 ≤ 𝑗 ≤ 𝑛 − 1, (𝐷 𝑥)𝑖,𝑛 = (𝑥𝑖+1,𝑛 − 𝑥𝑖,𝑛, 0) when
1 ≤ 𝑖 ≤ 𝑛 − 1, and (𝐷 𝑥)𝑛,𝑛 = (0, 0). For the convenience of subsequent
mathematical processing, we rewrite the TV norm into a matrix form

‖𝐱‖TV =
∑

1≤𝑘≤𝑛2

√

(𝐃𝐯𝐱)2𝑘 + (𝐃𝐡𝐱)2𝑘, (19)

where 𝐱 ∈ R𝑛2 represents an image of 𝑛 × 𝑛 pixels stretched along
one-dimension, 𝐃𝐯 and 𝐃𝐡 are 𝑛2 × 𝑛2 vertical and horizontal for-
ward differencing matrices, respectively, and (⋅)𝑘 is the 𝑘th entry of
a vector. It has been proved by Candes, Romber, and Tao [3] that
if an image has sufficiently sparse gradients (i.e., (𝐷 𝑥)𝑖,𝑗 is nonzero
for only a small number of indices 𝑖, 𝑗), equality-constrained TV min-
imization can recover the image using incomplete measurements. The
equality-constrained TV minimization is formulated as
min
𝐱

‖𝐱‖TV, s.t. 𝐲 = 𝐀𝐱. (20)
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A weighted TV norm, which is more general, is defined as

‖𝐱‖𝐰,TV =
∑

1≤𝑘≤𝑛2
𝑤𝑘

√

(𝐃𝐯𝐱)2𝑘 + (𝐃𝐡𝐱)2𝑘. (21)

In this experiment, the algorithm to simulate the clipping-reweighted
TV minimization is given in the following steps:

1. Set the iteration count 𝑙 to zero and 𝑤(0)
𝑘 = 1, 𝑘 = 1,… , 𝑛2.

2. Solve the weighted TV minimization problem

𝐱(𝑙) = ar g min
𝐱

‖𝐱‖𝐰(𝑙) ,TV, s.t. 𝐲 = 𝐀𝐱. (22)

3. Update the weight: for each 𝑘 = 1,… , 𝑛2,
𝑤(𝑙+1)

𝑘 = 1
√

(𝐃𝐯𝐱)2𝑘 + (𝐃𝐡𝐱)2𝑘 + 𝜖
. (23)

4. Calculate the upper bounds of SIC of 𝐀(𝐖(𝑙+1)𝐃𝐯 + 𝛾𝐈𝑛2 )−1 and
𝐀(𝐖(𝑙+1)𝐃𝐡 + 𝛾𝐈𝑛2 )−1 using Algorithm 3. Denote them as
{�̂�(𝑙+1)𝑣,𝑘 }𝑛2𝑘=1 and {�̂�(𝑙+1)ℎ,𝑘 }𝑛2𝑘=1, respectively. Define �̂�(𝑙+1)𝑘 ∶=
min(�̂�(𝑙+1)𝑣,𝑘 , �̂�(𝑙+1)ℎ,𝑘 ), ∀𝑘.

5. Clip the weight: for each 𝑘 = 1,… , 𝑛2,

𝑤(𝑙+1)
𝑘 ←

{

�̂�(𝑙+1)𝑘 𝑤(𝑙+1)
𝑘 ∕𝛼 , if �̂�(𝑙+1)𝑘 < 𝛼 ,

𝑤(𝑙+1)
𝑘 , otherwise.

(24)

6. Terminate on convergence or when 𝑙 reaches the maximum
number of iterations 𝑙𝑚𝑎𝑥. Otherwise, 𝑙 ← 𝑙 + 1 and go to step
2.

In Step 4, 𝛾𝐈𝑛2 is used to prevent singularity, where 𝐈𝑛2 is an 𝑛2 × 𝑛2

identity matrix, and 𝛾 is set to 1e − 3.
We conducted a reconstruction test on the Shepp–Logan phantom

image [47] to evaluate the above-proposed 6-step clipping-reweighted
algorithm. Results are shown in Fig. 10. The test image used (as shown
in Fig. 10(a)) consisted of 100 × 100 pixels, 831 of which had nonzero
gradients. We measured the image by sampling its discrete Fourier
transform (DFT) coefficients along 10 pseudo-radial lines. The sampling
pattern is illustrated in Fig. 10(b); it resulted in a total of 961 real-value
measurements. Fig. 10(c) highlights the reconstruction by minimizing
energy (also called back-projection) which solves

min
𝐱

‖𝐱‖2, s.t. 𝐲 = 𝐀𝐱. (25)

Fig. 10(d) displays the result of unweighted TV minimization, and
Fig. 10(e) shows the result of reweighted TV minimization with 𝜖 = 0.1
after four iterations. We experimented with different values of 𝜖 and
found that 0.1 was the optimal choice. Fig. 10(f) presents the recon-
structed image of the proposed clipping-reweighted TV minimization
after four iterations with 𝜖 = 0.1, and the parameter 𝛼 was computed
according to the adaptive strategy (12). Inspections of Fig. 10 indicate
that the reconstructed image obtained from the clipping-reweighted TV
minimization contained more details and less blur on the edges. Our
result also outperformed the benchmarks in terms of peak signal-to-
noise ratio (PSNR), a standard objective evaluation metric for assessing
image quality, where a higher PSNR indicates better image quality. The
proposed algorithm is robust to variations in the parameter 𝜖. Specifi-
cally, when the clipping-reweighted TV minimization was performed
with a suboptimal 𝜖 = 0.01, the PSNR of the reconstructed image
reached 24.11 dB. This was higher than what PSNR achieved by the
original reweighted TV minimization using 𝜖 values of 0.01, 0.1, and
1, which recorded PSNRs of 20.89 dB, 22.92 dB, and 21.85 dB, re-
spectively. These findings suggest that weight-clipping can improve the
performance of weighted TV minimization, leading to more accurate
and robust fast MRI techniques.
11 
Fig. 10. Results of recovering an image by TV minimization: (a) Original 100 × 100
Shepp–Logan Phantom image [47]. (b) 2D Fourier-domain sampling pattern. We
sampled the white regions’ DFT coefficients to reconstruct the image. (c) Reconstruction
by back-projection, PSNR = 16.21 dB. (d) Minimum TV reconstruction, PSNR = 19.36
dB. (e) Reweighted TV reconstruction, PSNR = 22.92 dB. (f) Clipping-reweighted TV
reconstruction, PSNR = 25.78 dB.

4.7. 𝑙1-Analysis minimization and Sub-Nyquist sampling

One of the well-known applications of 𝑙1-analysis minimization is
sub-Nyquist sampling, which aims to sample a signal at a lower rate
than the Nyquist rate (i.e., twice the highest frequency of the analog
signal). The traditional analog-to-digital converters (ADCs) uniformly
sample an analog signal at or above the Nyquist rate. Analog-to-
information conversion (AIC) based on CS theory is an alternative
sampling technique. An AIC system consists of multiple random mod-
ulation pre-integration (RMPI) units to rapidly change the polarity of
the analog signal, which is then integrated and quantized. These RMPIs
work in parallel to generate a highly compressed information vector,
which can be used to reconstruct the discretized signal. This allows
signal sampling at rates much lower than the Nyquist rate. More details
can be found in [2].

This section reports the application of the proposed weight-clipping
to sub-Nyquist sampling. Weight-clipping was applied in a commonly
used sparse model, where the signal was assumed to be not sparse but
had a sparse representation. Under this assumption, the signal could be
recovered by the 𝑙1-analysis minimization [48–50], which has the form

min
𝐱

‖Ψ∗𝐱‖1, s.t. 𝐲 = 𝐀𝐱. (26)

That is, we directly search for a signal 𝐱 whose representation 𝐳 = Ψ∗𝐱
is sparse, where Ψ is a dictionary composed of common bases of the
objects of interest, and Ψ∗ is the adjoint operator of Ψ.

The last experiment applied weight-clipping to the iterative
reweighting scheme. The proposed clipping-reweighted 𝑙1-analysis min-
imization algorithm used is summarized as follows:

1. Set the iteration count 𝑙 to zero and 𝑤(0)
𝑗 = 1, ∀𝑗 ∈ J (J contains

the column indexes of the dictionary Ψ).
2. Solve the weighted 𝑙1-analysis minimization problem

𝐱(𝑙) = ar g min
𝐱

‖𝐖(𝑙)𝛹∗𝐱‖1, s.t. 𝐲 = 𝐀𝐱. (27)

3. Put 𝐳(𝑙) = 𝛹∗𝐱, and update the weight: ∀𝑗 ∈ J,

𝑤(𝑙+1)
𝑗 = 1

|𝑧(𝑙)𝑗 | + 𝜖
. (28)
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Table 1
Performance (measured by SNR) of different algorithms in sub-Nyquist
sampling tasks, where 𝑚 is the number of RMPI units in AIC. Bold
indicates statistical significance (paired-sample t-test with a significance
level of 0.05).

algo
m 30 40 50

Unweight. L1 4.35 ± 5.84 dB 4.84 ± 6.84 dB 6.91 ± 6.91 dB
RW. L1 12.28 ± 7.00 dB 14.38 ± 5.68 dB 17.47 ± 5.88 dB
Clip RW. L1 𝟏𝟑.𝟒𝟏 ± 𝟓.𝟗𝟏 dB 𝟏𝟓.𝟕𝟐 ± 𝟓.𝟎𝟔 dB 𝟏𝟖.𝟑𝟗 ± 𝟓.𝟓𝟓 dB

4. Calculate the SIC upper bound of 𝐀Ψ(𝐖(𝑙+1))−1 using Algorithm
3. Denote them as {�̂�(𝑙+1)𝑗 }𝑗∈J.

5. Clip the weight: ∀𝑗 ∈ J,

𝑤(𝑙+1)
𝑗 ←

{

�̂�(𝑙+1)𝑗 𝑤(𝑙+1)
𝑗 ∕𝛼 , if �̂�(𝑙+1)𝑗 < 𝛼 ,

𝑤(𝑙+1)
𝑗 , otherwise.

(29)

6. Terminate on convergence or 𝑙 reaching the maximum number
of iteration 𝑙𝑚𝑎𝑥. Otherwise, 𝑙 ← 𝑙 + 1 and go to step 2.

The last experiment was an AIC simulation conducted to sample
mplitude modulation (AM) signals. For each trial, an AM signal was
enerated:

𝑥𝑜(𝑡) = [1 + 0.5 cos (2𝜋 𝑓𝑚𝑡)] sin (2𝜋 𝑓𝑐 𝑡), (30)

where the carrier signal was

𝑐(𝑡) = sin (2𝜋 𝑓𝑐 𝑡), (31)

and the message signal was a cosine wave

𝑚(𝑡) = 0.5 cos (2𝜋 𝑓𝑚𝑡). (32)

The simulation code randomly chose the carrier frequency 𝑓𝑐 between
1 GHz and 3.33 GHz, following a uniform distribution, and the message
signal frequency 𝑓𝑚 between 10 MHz and 50 MHz. To simulate an AIC
system that consisted of 𝑚 RMPI units and quantized the integration
after every 𝑛 addition, we sampled an 𝑚 × 𝑛 matrix 𝐀 with i.i.d.
Bernoulli ±1 entries and used 𝐀 to obtain 𝑚 measurements from the
AM signal. We set 𝑛 = 256 and the polarity change rate of RMPI was
set to 10 GHz. Successful reconstruction implied that a signal with
a maximum frequency of 5 GHz theoretically could be sampled at a
rate of approximately 1010∕256 ≈ 40 MHz. This greatly reduced the
sub-Nyquist sampling rate, and as such could reduce cost and save
resources. In this simulation, Ψ∗ was defined as a set of STFT using
Gaussian windows with lengths of 32, 64, 128, and 256. This led
to the Gabor dictionary with approximately 17 times overcomplete
(i.e., |J|∕𝑛− 1 ≈ 17). We set 𝑙max = 4, 𝜖 = 0.1, and 𝛼 = 30. We simulated
three different scales of AIC systems, namely with 30, 40, and 50 RMPI
units (i.e., 𝑚 = 30, 40, 50), and repeated the tests 100 times for each
scale. The accuracy of the reconstructed signal was measured in terms
of signal-to-noise ratio (SNR), and the results are shown in Table 1.
Fig. 11 depicts one of the results. Our findings indicate that after
pplying weight-clipping, there was an increase in both the accuracy
nd the stability of the reconstruction, as evidenced by an increase in

the means of SNRs and a decrease in the variance.

5. Conclusion

In this paper, we have discovered a novel property of weighted 𝑙1
inimization and introduced a new necessary condition for successful

ignal recovery. This property allows us to identify and correct de-
tructive weights that cause large errors in signal recovery. Extensive
imulation experiments have confirmed the effectiveness of our pro-
osed method across representative applications of compressed sensing,
ignal types, and 𝑙1 minimization variants. Specifically, we have shown
hat our method can make weight values more appropriate when prior
knowledge used in weighting schemes is inaccurate or when weights
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are improperly scaled. Furthermore, we demonstrate that incorporating
our method into Candes’s reweighting scheme enhances its ability to
recover signals, improves its robustness against non-stationary signals,
and increases its stability in generating high-quality weights.
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Appendix A. The proof of Theorem 1

We need the following two lemmas.

Lemma 1. For any 𝐚 ∈ F𝑛×1 and 𝐛 ∈ F𝑛×1 where F is either the real
number set R or complex number set C, the reverse triangle inequality holds:
‖𝐚 − 𝐛‖1 ≥ ‖𝐚‖1 − ‖𝐛‖1.

Proof. We omit the proof since it is a widely accepted inequality. ■

Lemma 2. Given a matrix 𝐀 = [𝐚1|𝐚2|⋯ |𝐚𝑛] ∈ F𝑚×𝑛 where F is either the
eal number set R or the complex number set C, if ∀𝑖 ∈ {1,… , 𝑛}, ‖𝐚𝑖‖1 ≤ 1,
hen ‖𝐯‖1 ≥ ‖𝐀𝐯‖1 for any 𝐯 ∈ F𝑛×1.

Proof. For any 𝐯 ∈ F𝑛×1, we have

‖𝐀𝐯‖1 = ‖

𝑛
∑

𝑖=1
𝑣𝑖𝐚𝑖‖1 ≤

𝑛
∑

𝑖=1
|𝑣𝑖|‖𝐚𝑖‖1. (A.1)

Because ∀𝑖 ∈ {1,… , 𝑛}, ‖𝐚𝑖‖1 ≤ 1, it follows that

‖𝐯‖1 =
𝑛
∑

𝑖=1
|𝑣𝑖| ≥

𝑛
∑

𝑖=1
|𝑣𝑖|‖𝐚𝑖‖1. (A.2)

Now we can conclude this proof from (A.1) and (A.2). ■

We introduce new notations here. We partition the matrix 𝐀 ∈
F𝑚×𝑛 into three submatrices 𝐁, 𝐂, and 𝐃 where 𝐁 ∈ F𝑚×𝑚 is assumed
to be invertible, and 𝐂 and 𝐃 are arbitrary submatrices containing
the remaining columns. Note that, following Proposition 1, permuting
columns in 𝐁, 𝐂 and 𝐃 does not affect the conclusion of this theorem.
Thus, we use 𝑇𝐵 , 𝑇𝐶 , and 𝑇𝐷, three disjoint subsets of {1,… , 𝑛}, to
denote the column indices of these three submatrices, without concern
about the order of the indices. For any linear equations 𝐲 = 𝐀𝐱, we
partition 𝐱 into three sub-vectors 𝐱𝑇𝐵 ∈ F𝑚×1, 𝐱𝑇𝐶 , and 𝐱𝑇𝐷 accordingly,
so 𝐲 = 𝐁𝐱𝑇𝐵 +𝐂𝐱𝑇𝐶 +𝐃𝐱𝑇𝐷 . Theorem 1 can be derived immediately from
the following Theorem 4.

Theorem 4. If the 𝑙1 norm of all columns of 𝐁−1𝐂 is smaller or equal
to 1, then 𝐱∗𝑇𝐶 = 0, where 𝐱∗𝑇𝐶 is the sub-vector of 𝐱∗ corresponding to the
subset 𝑇𝐶 , and 𝐱∗ is the unique optimal solution to the problem
min
𝐱

‖𝐱‖1, s.t. 𝐲 = 𝐀𝐱. (A.3)
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Fig. 11. Clipping-reweighted 𝑙1-analysis minimization (our proposed method) can result in better signal reconstruction in the sub-Nyquist sampling task. (a) Original signal sampled
at 10 GHz. (b) 𝑙1-analysis reconstruction, SNR = −0.34 dB (c) Reweighted 𝑙1-analysis reconstruction, SNR = 7.48 dB. (d) Clipping-reweighted 𝑙1-analysis reconstruction, SNR = 16.11
dB.
Proof. Construct a solution 𝐱′ such that 𝐱′𝑇𝐶 = 0, 𝐱′𝑇𝐷 = 𝐱∗𝑇𝐷 , where 𝐱∗𝑇𝐷
is already optimal, and 𝐱′𝑇𝐵 = 𝐁−1(𝐲 − 𝐃𝐱∗𝑇𝐷 ) for the sake of feasibility.
We shall prove that 𝐱′ is an optimal solution. Denote any change of 𝐱′
by 𝛥𝐱, and the corresponding changes on the three sub-vectors by 𝛥𝐱𝑇𝐵 ,
𝛥𝐱𝑇𝐶 , and 𝛥𝐱𝑇𝐷 . Because 𝐱′𝑇𝐷 is already optimal, it is only necessary to
prove that for any feasible change 𝛥𝐱 where 𝛥𝐱𝑇𝐷 = 0, ‖𝐱′ + 𝛥𝐱‖1 ≥
‖𝐱′‖1.

By definition,
‖𝐱′ + 𝛥𝐱‖1 =‖𝐱′𝑇𝐵 + 𝛥𝐱𝑇𝐵‖1 + ‖𝐱′𝑇𝐶 + 𝛥𝐱𝑇𝐶 ‖1

+ ‖𝐱′𝑇𝐷 + 𝛥𝐱𝑇𝐷‖1.
(A.4)

Because of the constraint 𝐲 = 𝐀𝐱, the following equation must to be
satisfied:

𝛥𝐱𝑇𝐵 = 𝐁−1(−𝐂𝛥𝐱𝑇𝐶 − 𝐃𝛥𝐱𝑇𝐷 ). (A.5)

Combining (A.4) and (A.5), we have
‖𝐱′ + 𝛥𝐱‖1 = ‖𝐁−1(𝐲 − 𝐃𝐱∗𝑇𝐷 − 𝐂𝛥𝐱𝑇𝐶 )‖1

+ ‖𝛥𝐱𝑇𝐶 ‖1 + ‖𝐱∗𝑇𝐷‖1.
(A.6)

Applying Lemma 1 yields
‖𝐁−1(𝐲 − 𝐃𝐱∗𝑇𝐷 − 𝐂𝛥𝐱𝑇𝐶 )‖1 ≥ ‖𝐁−1(𝐲 − 𝐃𝐱∗𝑇𝐷 )‖1

− ‖𝐁−1𝐂𝛥𝐱𝑇𝐶 ‖1.
(A.7)

By Lemma 2 and our assumed condition about 𝐁−1𝐂, for any 𝛥𝐱𝑇𝐶 , we
have

‖𝛥𝐱𝑇𝐶 ‖1 ≥ ‖𝐁−1𝐂𝛥𝐱𝑇𝐶 ‖1. (A.8)

Substituting (A.7) and (A.8) into (A.6) yields

‖𝐱′ + 𝛥𝐱‖1 ≥ ‖𝐁−1(𝐲 − 𝐃𝐱∗𝑇𝐷 )‖1 + ‖𝐱∗𝑇𝐷‖1, (A.9)

which holds for any feasible 𝛥𝐱 where 𝛥𝐱𝑇𝐷 = 0.
The 𝑙1 norm of 𝐱′ equals the right-hand side of the last inequal-

ity, hence, 𝐱′ is an optimal solution (also unique according to our
assumption). ■
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Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.sigpro.2024.109828.

Data availability

Data will be made available on request.
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