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Abstract 
VR HMD users can observe dynamic distortion (or global pupil 
swim). Our earlier study correlated pupil swim to selected optic 
flow patterns and mathematically modeled discomfort. This study 
decomposed global pupil swim as a linear sum of orthogonal basis 
patterns for improved prediction of its perceptual effects for an 
improved perception model. 

Author Keywords 
Distortion; pupil swim; head-mounted display; virtual reality 

1. Introduction  
Users of virtual reality (VR) may experience image distortion 
while viewing a head-mounted display (HMD). This distortion 
can be partially corrected by presenting a pre-distorted image that 
offsets the distortion from the optics. However, this approach 
assumes that the user’s eyes are fixed at the center of the display. 
As users’ eyes move across the display during a typical VR 
experience, the correction fails and images are exposed to 
dynamic distortion (or global pupil swim, PS). The perceived 
distortion changes as functions of eye locations as well as the 
intrinsic optic distortion of the display.  

 
Figure 1. A pupil swim represented as a vector field map 
to illustrate the direction and magnitudes of distortions. 
Vectors are scaled by 12 for better illustration.  
PS map can be illustrated as a vector field map (also called optic 
flow, example given in Figure 1), representing the angular shifts 
of projected images from their expected locations to perceived 
locations. Our earlier study [1] mathematically modeled 
perceived motion discomfort by comparing and correlating the 
complex optic flows with simple basis patterns. The magnitudes 
of correlation to these patterns were used to predict human 
perception of PS. Despite its tremendous value in evaluating and 
validating different optical system designs, it is a mapping 
algorithm that can generate duplicates/ over estimation in 
predicting discomfort complaint. For example, the sum of 
correlated basis patterns is usually larger than the raw pupil swim 
map. These duplicated representations will add noise in 
predicting perceptual discomfort score and prevent detailed 
analyses of the associative causal effects.  
The objective of this study is to decompose PSs into a finite set 
of components which satisfy the following constraints: (a) PS can 
be decomposed into a linear sum of these basis components; (b) 

The components should be as orthogonal as possible; and (c) 
Reconstructions of PSs do not involve components with vector 
features that are not present in the original pupil swim. The last 
constraint aims to avoid the creation or inclusion of interim 
features that will be cancelled out during the summative process. 
In other words, we aim to reconstruct the PS through a 
progressive summative process. This will increase the linearity of 
the model. 
From our previous work [1], we believe that perception of PS can 
be attributed to a few key basis components. The contribution of 
this new study is to determine whether these components, which 
linearly sum to the original PS, also additively contribute to 
perception score following Weber-Fechner law. 

2. Method of Decomposing Dynamic Distortion 
2.1. Defining pupil swim (PS) basis components 
PS maps (total 246) from 41 different displays and 6 positions of 
eye motion were decomposed into a linear sum of components. 
The PS maps are initially represented as a 2xN matrix 
corresponding to the horizontal and vertical magnitudes of each 
vector in an optic flow pattern (where N is the total number of 
vectors). For this study, N of 1764 (42x42) was used but this can 
change with the FOV of the PS and the density of the vector. The 
2xN matrix is also referred to as the component indexed j (compj). 
These 2xN components are reshaped into a 1-dimensional matrix 
with length 2N to allow for the simple mathematical 
representation in eq. 1. Each case of PS indexed i (PSi) is the sum 
of component indexed j (compj) weighted by the fitted 
coefficients (coefi,j), or the magnitude of the component. An 
example of such decomposition is illustrated in Figure 2. 

 
(1) 

The choice of basis component patterns is of great importance. 
We considered 3 methods: 1) basis patterns identified from 
previous study that has visual and motion meanings; 2) gradients 
of Zernike polynomials to account for optical aberration [2]; 3) 
basis patterns obtained from principal components analysis 
(PCA).  
Four components previously derived from 2D translation and 
rotation motions along the surface of the displays were adopted 
[1] (Figure 3-a). In addition, another four motion-related 
components derived by 3D titling transformations projected 
through the 246 PSs were added (Figure 3-b). These four 
components were calculated using cluster analyses to maximize 
their coverage. 
Zernike polynomials were considered because they represented a 
complete basis set of polynomials orthogonal in a unit circle. In 
theory, any optical aberration can be modeled as a linear 
combination of Zernike polynomials. In particular, the vector  



 

polynomials based on gradients of the original Zernike 
polynomials by Zhao and Burge [2] seemed useful for this study. 
We found that the lower-order vector polynomials corresponded 
to simple motion patterns in Figure 3-a. However, the higher-
order vector polynomials were dissimilar to the PSs from the 41 
displays. Most of the vector polynomials exhibited rotational 
symmetry, and could not represent the asymmetrical PS maps 
commonly found in displays. 
To determine suitable basis components to capture the 
asymmetric characteristics found in most PSs, PCA was 
employed to decompose the residue after fitting a linear model 
with the 8 motion-based components [3]. The initial fitting with 
motion-based components was regularized with L1 regularization 
to prevent the model from fitting the residues with sub-optimal 
components. This effectively provided the stopping criteria. 
According to the data representation for PSs and components, the 
residues are 1-dimensional matrices of length 2N. By applying 
regular PCA on this matrix, the x-magnitude and y-magnitude 
were analyzed as separate features instead of a single vector. 
Although some studies have demonstrated that 2D PCA is more 

efficient for decomposition, this was considered unnecessary for 
the current study, as more elementary components could be fitted 
to a wider variety of PS. [4] The first 4 principal components were 
selected (Figure 3-c). 

2.2. Sequential fitting vs. concurrent fitting 
In decomposing PS into a linear sum of vector field patterns, there 
was a tendency for components or groups of components to be 
larger than the original PS. Larger magnitude is defined as the 
tendency of some components to have larger vectors, or to be 
denser than the original PS. This is caused by the potential for 
patterns to offset each other. 
A sequential fitting process was used wherein one component 
would be fitted to the pupil swim at each time. In effect, the 
magnitude of each component would be constrained to the 
magnitude of the original PS. After one component is fitted, the 
next component is fitted to the residual from the previous fitting.  
At each iteration, the residuals from previous iterations (resi) 
were fitted with a new component which was selected by the 
objective function in eqs. 2-3. The objective function fits a 

 
Figure 2. The components of a pupil swim (PS) and its reconstructed sum, compared with the original pupil swim. Vectors 

are scaled up 20 times for better illustration, mean reconstruction errors are 0.07 degrees before scaling.  

 
Figure 3. Components based on (a) simple motion or lower-order Zernike polynomials, (b) complex pupil swim from 

observing plane tilting, and (c) principal components derived from the residues after fitting with components in (a) and (b). 
Vectors have been scaled 100 times for better illustrations.  



 

coefficient (αi) to each potential component indexed j. Thus the 
optimized coefficient αi* is a function of j. This links to linear 
sum in eq. 1 through eq. 4. In addition to sequential fitting, 
regularization was introduced to further reduce the collinearity 
between features.     

  
(2) 

  (3) 

 (4) 

In this case, the L1 regression coefficient (l1) was applied to 
improve the sparsity of components. This prevented less 
important components from being used in decomposition.  
The distributions of the median reconstruction errors for the 246 
PSs are plotted in Figure 4. The number of components used in 
the fitting ranged from 2 to 4 for each pupil swim.  

 
Figure 4. Median reconstruction errors (in degrees) of the 
246 pupil swims using 2 to 4 components fitted from the 
12 components shown in Figure 3. 

3. User Study and Perception Model 
3.1 Method for the user study 
Our earlier study showed that certain types of optic flow may be 
more disturbing than others.[1] The 12 components derived above 
are expected to have different perceptual weights as well. This 
section discusses the user study to determine the perceptual 
weight of each component and to build a complete perceptual 
model. A pilot study is being conducted to test two hypotheses: 
(1) decomposed components of a disturbing PS will also cause 
disturbance; and (2) the level of disturbance of a PS can be 
predicted by a weighted function of the perceptual weights of its 
decomposed components. 
To maintain consistency with our previous study [1], pilot studies 
followed similar experimental designs. Vector maps of display 
distortions associated with a PS and its components were 
dynamically overlaid on VR content and presented through a 
modified Oculus Rift CV1 headset. Participants were asked to 
fixate on objects at the center of the display, and then rotate their 
heads while keeping their eyes fixated on the object. This 
effectively created the PS and its perceptual effects. 
For the pilot study, two distinct cases of PS were selected (Figure 
5). Based on the selected cases, this study will focus on 
components A1+, C1-, C2+, C3- and C4- defined in Figure 2 (B1 
and B2 were ignored as their magnitudes were too small – see 
Figure 5). These components will be presented to the participant 
as visual stimuli at 5 different scaling factors. By decomposing 
the pupil swim into a linear sum of components, it is possible to 

have negative and positive magnitudes for each component. The 
sign of the coefficient affects the meaning of the component 
(negative coefficient for a ‘zooming in’ optic flow becomes 
‘zooming out’.) Thus, the user study considers two versions of the 
component, negative and positive-coefficient versions. 
Perception data on different scaling factors will be used to predict 
the perception of a component at various magnitudes, obtained 
from decomposition.   
In total, ten participants will be presented with 52 simulated PS 
maps: the 5 components x 5 scaling factors x 2 signs and the 2 
pupil swim cases (8 participants were used in [1] and a power 
analysis will be conducted to confirm the number of participants 
needed for the statistical analyses). The participants will be asked 
to report their perception of each simulated map by answering the 
following questions: (a) In this trial, suppose you are exposed to 
this visual environment for about 20 minutes, how would you 
assess the scene in terms of discomfort, dizziness, and 
disorientation?  (Rate 1-5) (b) In this trial, comparing with 
extremely realistic virtual world, how would you assess the scene 
in terms of image deformation or disorientation? (Rate 1-3). This 
allows for comparison with the results of [1], which used the same 
means of measuring perception.  

3.2. Result of the user study 
In this study, we placed a heavy emphasis on identifying 
components that were as orthogonal as possible to additively 
reconstruct the pupil swim. We hypothesize that the perceptual 
weight of each component will also additively contribute to the 
perception when these components are summed. It is possible that 
the components offset each other in a way that cannot be 
explained by numerical decomposition; it’s also possible that the 
combined perceptual weights of the components may be less than 
the perception score of the original pupil swim. Regardless, the 
results are relevant towards characterizing the perception of PS. 
(We are currently collecting the data for the user study. The data 
will be included in the final manuscript submitted by March 15, 
2022. ) 

3.3 Perception model 
The aim of the study is to use the perception scores of individual 
components to build a predictive model for the perceptual effect 
of pupil swim in different displays. By collecting data on the 
perception scores of each component at different scaling factors, 
it is expected that we can eventually predict the perception score 
for that component (score'i,j) at a specified magnitude (coefi,j). Eq. 
5 is fitted using the perception data collected for each component. 
The log-scale is based on Weber-Fechner law, which is 
extensively used to relate the magnitude of physical stimuli with 
human perception. Specifically, Weber-Fechner takes the 
logarithm of the ratio of stimulus intensity to a threshold value 
corresponding to no perception. This study assumed that the 
threshold value was 0, i.e., when no stimuli was presented. Hence 
eq. 5 was written such that the score would be 0 when coefi,j is 0.  
It is expected that the sum of the component scores will add up to 
the perception score of the complete pupil swim as in eq. 6. At 
the moment, eqs. 5 and 6 are hypothetical and subject to further 
modification.    
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The perception model will be validated and wj will be determined 
by comparing the subject-reported score (questions a and b in 
Section 3.1) for PSs with the sum of predicted perception scores 
for each component.   

4. Conclusion 
Our news study decomposes pupil swim into a linear sum of optic 
flow patterns. Decisions on the components selected and design 
of the decomposition approach were made with the intention to 
minimize duplication and offsetting between components. This 
approach had two benefits: First, it creates a perceptually 
meaningful way of decomposing optic flow patterns. Second, the 
magnitude of each component is proportional to its perceptual 
contribution. 
The data collected in this study is being used to build an improved 
perception model for pupil swim. Data on user perception of the 
components from data-driven and optics-based methods were 
used to scale perception scores according to component 
magnitude from real PS. Following calibration and testing on a 
wider range of PSs from various kinds of eye movement, the 
perception model may be applied to testing optical designs as part 
of the prototyping process. 

Note to the reviewers: 
We are currently collecting the data for the user study described 
in Section 3.1. The data will be included in the final manuscript 
submitted by March 15, 2022.  Upon completion of the pilot 
study, more user studies with the remaining 7 components and 
other PSs will be conducted to validate the model.  

5. Impact of The Research 
The mathematical perception model from our previous work has 
been tremendously useful in designing VR/AR products. It allows 
us to predict motion discomfort of optical system designs without 
the need of making physical prototypes; significantly speeding up 
iterations.  
Like the early days of Color Science when people started to 
mathematically model color perception, we have created this first 
math model for perception of motion discomfort due to pupil 
swim. This new work took a different approach (more 
mathematically sound and rigorous) from our earlier study by 
using a more comprehensive yet finite (12) set of components and 
deriving component magnitude relative to the magnitude of the 
original pupil swim.  The individual components derived from 
this study have perceptual meaning, which align with the 
perception score reported by users. The work represents a 
significant contribution to an important emerging area.  
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Figure 5. Selected PS cases for pilot study: the original PS and their component weightings. 


