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ABSTRACT

The degenerate unmixing estimation technique (DUET) is
one of the most efficient blind source separation algorithms
tackling the challenging situation when the number of sources
exceeds the number of microphones. However, as a time-
frequency mask-based method, DUET erroneously results in
interference components retention when source signals over-
lap each other in both frequency and time domains. In this
paper, to avoid the erroneous retention, instead of masking,
we propose to use multiple linear spatial filters (e.g., the min-
imum variance distortionless response filter) to extract the
desired signals. These filters are constructed based on the
information embedded in the detected single-source-points,
that is, time-frequency points contributed by a single source.
In comparison with the conventional DUET, our method
achieved an impressive improvement greater than 5 dB in
the source-to-interference ratio and 2 to 5 dB improvement
in the source-to-distortion ratio, respectively. Findings are
substantiated by unmixing simulation using live-recorded
mixture signals from up to four sources. Audio examples can
be found on the web page: ”https://ydcnanhe.github.io/demo-
icassp2022/”

Index Terms— blind source separation, degenerate un-
mixing estimation technique, single-source-points, linear spa-
tial filter

1. INTRODUCTION

Most blind source separation (BSS) algorithms, like inde-
pendent component analysis (ICA), require the number of
sources equal to or less than the number of microphones. Un-
fortunately, this deviates from most, if not all, real situations.
The degenerate unmixing estimation technique (DUET) [1]
is one of the most famous and efficient BSS techniques to
separate more than two sources with binaural microphones.
DUET creates time-frequency (TF) binary masks to separate
one of the mixtures into the original sources. However, the
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weakness of binary masking is that the interference compo-
nents are erroneously retained when a TF point contains sig-
nals from more than one source. Considering this issue, Ya-
maoka et al. [2] proposed a solution to reduce the interference
retention. Nevertheless, they assumed that the source’s direc-
tion of arrival (DOA) was known and only focused on a single
source extraction rather than separation.

In this paper, we develop an algorithm to separate sound
sources without assuming that their DOA are known. In ad-
dition, our algorithm obtains a better interference suppres-
sion than DUET. The proposed algorithm contains two novel
steps. First, TF points capturing a single source (referred to as
single-source-points, SSPs) are detected; then, multiple lin-
ear spatial filters (LSFs) are constructed based on the spa-
tial information of sources obtained from the detected SSPs.
These LSFs are switched for different TF points to extract
the most likely source’s component. Our proposed algorithm
does not restrict the type of LSF. We have tested two types of
LSF in this paper: one is the well-known minimum variance
distortionless response (MVDR) [3, 4], and the other one is
first proposed in this paper and called interference suppres-
sion response (ISR), which is inspired by [5]. In contrast to
MVDR, ISR does not require estimating the acoustic transfer
function (ATF), which is difficult in the presence of multi-
ple sources and reverberation. The result of our experiments
showed that our proposed method obtained a better separation
performance using ISR.

2. LITERATURE REVIEW

2.1. Notations

Denote the transpose (·)T and the Hermitian transpose (·)H.
The number of microphones is M and the number of sources
is N . Denote the Short-time Fourier transform (STFT)
of observed signals, observed signals contributed only by
the i-th source, and the i-th source signal by x(t, f) =
[x1(t, f), . . . , xM (t, f)]T, ci(t, f) = [c1i(t, f), . . . , cMi(t, f)]T

and si(t, f), respectively, at time frame t ∈ {1, . . . , T} and
discrete frequency bin f ∈ {0, . . . , F − 1}. The narrow-band
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approximation [6] is given by

x(t, f) =

N∑
i=1

ci(t, f),

ci(t, f) = ai(f)si(t, f),

(1)

where ai(f) = [a1i(f), . . . , aMi(f)]T is the ATF from the
i-th source to the microphones.

2.2. Degenerate Unmixing Estimation Technique (DUET)

DUET assumes that for each TF point (t, f), there is only
one source active, that is, mathematically, ∃i ∈ {1, . . . , N}
such that x(t, f) = ci(t, f), ∀(t, f). Under this so-called
the W-Disjoint Orthogonal assumption [7, 8], separation of a
mixture into the original sources via binary masks is allowed.
The binary masks are created as follows. Consider the two-
channel of signals observed by two microphones and denote
their STFT coefficients x(t, f) = [x1(t, f), x2(t, f)]T. Two
mixing parameters can be locally extracted in each TF point:

a(t, f) = |x2(t, f)/x1(t, f)|,
δ(t, f) = −1/(2πf)∠

(
x2(t, f)/x1(t, f)

)
,

(2)

where | · | is to take the module of a complex number and
∠(·) is to take the angle of a complex number. The rel-
ative attenuation, a(t, f), is the ratio of the attenuation of
the paths between sources and microphones. The difference
of the delay between the paths is called the relative delay,
δ(t, f). When there are N sources, a two-dimensional his-
togram made up of sufficient pairs {

(
a(t, f), δ(t, f)

)
, ∀t, f}

is supposed to show N peaks. Each peak center is the cor-
responding source’s relative attenuation-delay pair estimate.
Given the peak centers (ai, δi), i = 1, . . . , N , a likelihood
function [9] is used to measure the closeness between peak
centers and the local attenuation-delay pairs (2) extracted
from each TF point

ρi(t, f) :=
1

1 + |Λi|2
|Λix1(t, f)− x2(t, f)|2, (3)

where Λi = |ai| exp(−2πfδi), and i = 1, . . . , N . The bi-
nary masks {Mi(t, f), i = 1, . . . , N} are created based on
the closeness measure

Mi(t, f) =

{
1, if ρi(t, f) < ρj(t, f),∀j 6= i,

0, otherwise.
(4)

The mixture is separated via the masks

ŝi(t, f) = Mi(t, f)x1(t, f). (5)

In this study, we will deploy the likelihood function (3) and
modify the masking (5) to better separate the sources.

2.3. Minimum Variance Distortionless Response (MVDR)

MVDR is defined by a frequency-dependent vector wMVDR(f)
which comprises one complex-valued weight per micro-
phone. Its output is wH

MVDR(f)x(t, f) which estimates the
target source. Hereafter, we omit f and denote by wMVDR
the filter for compactness. Assume the i-th source is the tar-
get source, MVDR is constructed by solving the following
optimization problem

min
w

wHΣiw

s.t. wHai = 1,
(6)

where Σi = 1
T

∑T
t=1 u(t, f)uH(t, f) is called the sample co-

variance matrix of interference, and u(t, f) =
∑N

j=1, j 6=i cj(t, f)
are the STFT coefficients of observed signals only from in-
terferences. The optimization problem (6) yields

wMVDR =
Σ−1i ai

aH
i Σ−1i ai

. (7)

MVDR reconstructs the target source without distortion, but
it requires the ATF which is difficult to be estimated when
there are multiple sources and reverberation. Therefore, in the
following section, we modify the constraint in (6) to construct
an ATF-independent LSF.

3. PROPOSED METHODS TO IMPROVE DUET

3.1. Interference Suppression Response (ISR)

Inspired by [5], we propose an ATF-independent LSF, which
will be used to replace masking in DUET as in Section 3.2.
The proposed filter, called interference suppression response
(ISR), can be constructed by solving the following optimiza-
tion problem

min
w

wHΣiw

s.t. w1 = 1,
(8)

where w1 is the first entry of the vector w, and the definition
of Σi is given in Section 2.3. The constraint (w1 = 1) is
to avoid the zero solution. The solution of (8) can be given
based on the solution (7) by replacing ai by [1, 0 . . . , 0]T. The
output of ISR is

wH
ISRx(t, f) = (wH

ISRai)si(t, f) + n, (9)

where si(t, f) is the target source and n is the noise remnant
after filtering. Although ISR introduces distortion on the tar-
get source, it sounds like a kind of mild high-pass filtering,
and the human auditory system appears not very sensitive to
it. Furthermore, a definite advantage over MVDR is that the
ISR does not require ATF.
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3.2. Combining DUET with Linear Spatial Filter

DUET separates a mixture into original sources via binary
masks, as described in Section 2.2. Masking falsely leads to
interference retention when a TF point is contributed by more
than one source. Instead of the simple masking, we propose
to switch multiple LSFs (e.g., MVDR in Section 2.3 or ISR in
Section 3.1) in different TF points to extract the most likely
source’s component. The most likely source in a TF point
is the source with the smallest closeness defined by (3). To
construct the LSFs, SSPs are detected to estimate the ATF of
the target source and the sample covariance matrix of interfer-
ence. Given a TF point, if the smallest closeness is less than
a threshold, this TF point is labelled as a SSP of the corre-
sponding most likely source. Then, the i-th source’s ATF and
the corresponding sample covariance matrix of interference
can be estimated, respectively, by

âi =
1

Td

Td∑
k=1

ĉi(tik, f)/ĉ1i(tik, f),

Σ̂i =
1

Td

Td∑
k=1

(∑
j 6=i

ĉj(tjk, f)
)(∑

j 6=i

ĉj(tjk, f)
)H
,

(10)

where ĉi(tik, f) is the STFT coefficients in the k-th detected
SSP of the i-th source. Finally, instead of the masking (5), the
mixture is separated via the multiple LSFs

ŝi(t, f) =

{
wH

i x(t, f), if ρi(t, f) < ρj(t, f),∀j 6= i,

0, otherwise,
(11)

where {wi, i = 1, . . . , N} are the multiple LSFs and ρi(t, f)
is defined as (3). The improved DUET is detailed in Algo-
rithm 1. In this paper, we focused on the setting of two mi-
crophones. Extending the algorithm to more microphones is
not difficult.

4. EXPERIMENTAL EVALUATION

Implementation was conducted in Matlab R2019a and op-
eration system was Ubuntu 18.04.4 LTS with Intel Core i9-
9900K CPU @ 3.60GHz X 16 and 62.7GiB memory.

4.1. Experimental Protocol

The proposed algorithm was evaluated in terms of the stan-
dard audio source separation metrics: source-to-distortion ra-
tio (SDR), source-to-interference ratio (SIR), and source-to-
artifacts ratio (SAR) [10]. The mixtures used in all separation
tasks were from the underdetermined speech and music mix-
tures in SiSEC2011 [11]. Audio files (male4 and female4)
in the development package, dev1, were utilized. Mixtures
are two-channel live recordings obtained for a meeting room
of 130 ms or 250 ms reverberation time. Dimensions of the

Algorithm 1: Improved DUET using LSF
Input: Mixtures observed by two microphones, the

number of sources N , a closeness threshold µ
Output: N demixed signals

1 Implement STFT on the mixtures.
2 Build up the relative attenuation-delay histogram

described in Section 2.2
3 Find N peaks on the histogram and measure the

closeness between the local attenuation-delay pairs
in each TF point and the peak centers by (3).
Denote the closeness ρi(t, f), i = 1, . . . , N .

4 ∀i ∈ {1, . . . , N}, label the TF point (t, f) the i-th
source’s SSP if ∀j 6= i, ρi(t, f) < ρj(t, f) and
ρi(t, f) < µ.

5 Estimate the ATFs and the sample covariance
matrices of interference by (10).

6 Construct the multiple LSFs {wi, i = 1, . . . , N} by
solving (6) or (8).

7 Demix mixtures in STFT domain via (11).
8 Return demixed signals in time domain by

implementing the inverse STFT.

recording room are 4.45 m×3.55 m×2.5 m. Four loudspeak-
ers are 1 m away from the center of two omnidirectional mi-
crophones with 5 cm spacing. Azimuth angles of the loud-
speakers are −50◦, −10◦, 15◦, and 45◦. All mixtures and
source image signals have a 10-second duration.

Three separation cases were investigated, including two
mixtures of two, three, and four sources. The proposed
method was compared with DUET, independent vector anal-
ysis (IVA) [12], and state-of-the-art methods, independent
low-rank matrix analysis (ILRMA) [13], multichannel non-
negative matrix factorization (MULTINMF) [14], and full-
rank model (FULLRANK) [15]. We have adopted all the
above algorithms’ codes and parameter settings according to
their source literature. The window length of STFT of each
algorithm was optimized individually. A 3/4 overlapping
1024-point-long (64 ms) Hann window was used for the pro-
posed method, DUET, and IVA. A half-overlapping1 4096-
point-long (256 ms) Hann window was used for ILRMA
as in [13, 16]. A 3/4-overlapping 2048-point-long (128 ms)
Hann window was applied in MULTINMF and ILRMA. We
tried other window functions with different window lengths
and overlapping rates but they did not bear a higher SDR
value. The closeness threshold µ of the proposed method
was set to 0.05. The number of bases of ILRMA for each
source was set to two, which is appropriate for speech signal,
as shown in [13]. The number of components per source in
MULTINMF was set to 10 as recommended in [14].

1A 3/4-overlapping window is not allowed in the ILRMA Matlab function
provided by its authors.
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4.2. Performance Evaluation Using Speech Signals

4.2.1. Two mixtures of two sources

For each reverberation time (130 ms or 250 ms), 24 pairs of
two mixtures of two sources were used for evaluation, corre-
sponding to six different DOA settings (two out of four loud-
speaker azimuth angles) and four different sets of male and/or
female speech sources. The result is shown in Figure 1.

Fig. 1. Average BSS performance comparison (output SDRs,
SIRs, and SARs) for two mixtures of two sources in the pres-
ence of 130 ms and 250 ms reverberations.

4.2.2. Two mixtures of three sources

Totally 32 pairs of two mixtures of three sources had been
blindly separated in this case for each reverberation time, cor-
responding to four different DOA settings (three out of four
loudspeaker azimuth angles) and eight different sets of speech
sources. Figure 2 bears the result of the separation perfor-
mance. IVA and ILRMA can not be used for comparison in
this case because they require that the number of sources is
equivalent to the number of microphones.

4.2.3. Two mixtures of four sources

Sixty pairs of two mixtures of four sources had been tested for
each reverberation time, corresponding to 16 different sets of
speech sources. The performance is illustrated in Figure 3.

4.2.4. Results and discussion

In all the above experiments, the proposed method, DUET-
ISR, outperformed other BSS algorithms significantly (paired-
t test with significance level α = 0.05) in terms of SDR, SIR,
and SAR. It can be also perceived that, compared to DUET,
the reconstructed signal of DUET-MVDR and DUET-ISR
had much less interference components, which is consistent
with the SIR improvement.

Fig. 2. Average BSS performance comparison (output SDRs,
SIRs, and SARs) for two mixtures of three sources in the pres-
ence of 130 ms and 250 ms reverberations.

Fig. 3. Average BSS performance comparison (output SDRs,
SIRs, and SARs) for two mixtures of four sources in the pres-
ence of 130 ms and 250 ms reverberations.

5. CONCLUSION

We significantly improved DUET and consequently obtained,
using live-recorded data in a mild reverberant environment,
more than 5 dB SIR (signal-to-interference ratio) improve-
ment and 2 to 5 dB SDR (signal-to-distortion ratio) improve-
ment. The level of improvement compares well with past lit-
erature (2 to 3 dB SDR improvement [2]). This was achieved
by replacing simple masking by multiple linear spatial filters
optimized for individual sources utilizing information embed-
ded in the TF points occupied by a single source. This method
retains the computational efficiency and is scalable to more
than two microphones with theoretically projected improved
SIR performance of more than 5 dB.
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